fastmat
Release 0.2.2

Sebastian Semper, Christoph Wagner

Apr 21, 2023






10

11

12

13

14

15

16

17

18

19

20

21

22

Block Diagonal Matrix
Block Matrix
(Multilevel) Circulant Class
Diagonal Matrix
Diagonal Block Matrix
Identity Matrix
Fourier Matrix
Hadamard Matrix
Kronecker Product
LFSR Circulant Matrix
Low Rank Matrix
Matrix Base Class
Outer Product
Parametric Matrix
Partial Matrix
Permutation Matrix
Matrix Polynomial
Matrix-Matrix Product
Sparse Matrix

Matrix Sum

(Multilevel) Toeplitz Class

Transposition and Related Classes

CONTENTS

11
13
15
17
19
21
23
33
35
37
39
41
43
45
47
49

51




23

24

25

26

27

28

29

30

31

32

33

34

35

Zero Matrix

Algorithm Index

24.1 Algorithm Base Class . . . . . . . . . o o o e e e e
242 FISTA Algorithm . . . . . . . . o o e e
24.3 ISTA Algorithm . . . . . . . . e e e e e e e e
244 OMP Algorithm . . . . . . . . e e e e e
245 STELA Algorithm . . . . . . . . e e

Architecture

25.1 Matrix Class Model . . . . . . . . . . . e
25.2 Algorithm Class Model . . . . . . . . 0 . . o e
253 SciPylInterface . . . . . . . .
25.4 DataTypesinfastmat . . . . . . . . . . . e e e
25.5 Performance Interface tonumpy C-APL . . . . . . . . . . . . . ..
25.6 Low-Overhead Array Striding Interface . . . . . . . ... ... ... ... . o oo,
25.7 Calibration and Runtime Optimization. . . . . . . . . .. .. ... ... L. ...

User Defined Classes
26.1 Developing Your own fastmat Matrix . . . . . . . . . ... Lo e
26.2 Optimizing fastmat Class Implementations . . . . . . . . .. . .. ... .

Testing and Benchmarking
27.1 Benchmarking fastmat Classes . . . . . . . . . .. . ... e
27.2 Testing fastmat Classes and Unit Tests . . . . . . . . . . . . . ... i

Examples
28.1 Compressed Sensing example . . . . . . . ... o L e
28.2 Solve a System of Linear Equations with Preconditioning . . . . . . ... ... ... ... .....

References

Releases

30.1 Rolling Stable Branch . . . . . . . . . . . e e e e e
30.2 Version 0.2 . . . . . e e e e e e e e e e
30.3 Version 0.1.2 . . . . o e e e e e
30.4 Version 0.1.1 . . . . . . L e e e e e e e e e
30.5 Version 0.1 . . . . . L e e

Introduction
Publications

Public Appearances
Contributions

Affiliations and Credits

Bibliography

Python Module Index

Index

53

55
55
56
57
58
60

63
63
63
63
63
67
68
68

71
71
71

73
73
73

83
83
85

93

95
95
95
95
95
95

97

99

101

103

105

107

109

111




CHAPTER
ONE

BLOCK DIAGONAL MATRIX

class fastmat.BlockDiag

Bases: Matrix

M = diag {(4,),}

where the A; can be fast transforms of *any* type.

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

# import the package
import fastmat as fm

define the blocks

= fm.Circulant(x_A)
fm.Circulant (x_B)
fm.Fourier(n)
fm.Diag(x_D)

O N W %
I I

H

define the block
# diagonal matrix
M = fm.BlockDiag(A, B, C, D)

Assume we have two circulant matrices A and B, an /N-dimensional Fourier matrix C' and a diagonal matrix D.
Then we define

D

Meta types can also be nested, so that a block diagonal matrix can contain products of block matrices as its
entries. Note that the efficiency of the fast transforms decreases the more building blocks they have.

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

import fastmat as fm
# import the package

define the blocks
= fm.Circulant(x_A)
= fm.Circulant (x_B)
fm.Fourier(n)
fm.Diag(x_D)

O MW o

# define a product

(continues on next page)




fastmat, Release 0.2.2

(continued from previous page)

>>> P = fm.Product(A.H, B)
>>>

>>> # define the block

>>> # diagonal matrix

>>> M = fm.BlockDiag(P, F, D)

Assume we have a product P of two matrices A™ and B, an N-dimensional Fourier matrix F and a diagonal
matrix D. Then we define

AR B

M= F
D

Todo:
* BlockDiag should simply skip all Zero Matrices (flag them as “None”)?

__init__QO
Initialize a BlockDiag matrix instance.

Parameters

*matrices
[fastmat.Matrix] The matrix instances to be put along the main diagonal of the block
diagonal matrix, beginning at index (0, 0) with the first matrix.

**options

[optional] Additional keyworded arguments. Supports all optional arguments supported by
fastmat.Matrix.

2 Chapter 1. Block Diagonal Matrix



CHAPTER
TWO

BLOCK MATRIX

class fastmat.Blocks
Bases: Matrix

M = (A;;)

2V

where the A; ; can be a fast transforms of any type.

>>> # import the package
>>> import fastmat as fm

>>>

>>> # define the blocks
>>> A = fm.Circulant(x_A)
>>> B = fm.Circulant(x_B)
>>> C = fm.Fourier(n)
>>> D = fm.Diag(x_D

>>>

>>> # define the block

>>> # matrix row-wise
>>> M = fm.Blocks([[A,B],[C,D]])

Assume we have two circulant matrices A and B, an /N-dimensional Fourier matrix C' and a diagonal matrix D.

Then we define
A B
u-[s )

Todo:
* Blocks should simply skip all Zero Matrices (flag them as “None”)?

__init__QO

Initialize a Blocks matrix instance.
Parameters

arrMatrices
[iterable] A 2d iterable of py:class:fastmat.Matrix instances. All matrices must form a
consistent grid over all instances of the 2d iterable. The inner iterable defines one row of
the block matrix whereas the outer iterable defines the stacking of these rows. All inner
iterables must be of same length. Further, all matrix instances in a row must have equal
height and all instances in a column must have equal width.




fastmat, Release 0.2.2

**options
[optional] Additional keyworded arguments. Supports all optional arguments supported by
fastmat.Matrix.

4 Chapter 2. Block Matrix



CHAPTER
THREE

(MULTILEVEL) CIRCULANT CLASS

class fastmat.Circulant

Bases: Partial

This class provides a very general implementation of circulant matrices, which essentially realize a (possibly
multidimensional) circular convolution.

This type of matrix is highly structured. A two-level circulant Matrix looks like:

>>> c_00 c_02 c_01 c_20 c_22 c_21 c_10 c_12 c_11
>>> c_01 c_00 c_02 c_21 c_20 c_22 c_11 c_10 c_12
>>> c_02 c_01 c_00 c_22 c_21 c_20 c_12 c_11 c_10
>>>

>>> ¢_10 c_12 c_11 c_00 c_02 c_01 c_20 c_22 c_21
>>> c_11 c_10 c_12 c_01 c_00 c_02 c_21 c_20 c_22
>>> c_12 c_11 c_10 c_02 c_01 c_00 c_22 c_21 c_20
>>>

>>> ¢c_20 c_22 c_21 c_10 c_12 c_11 c_00 c_02 c_01
>>> c_21 c_20 c_22 c_11 c_10 c_12 c_01 c_00 c_02
>>> c_22 c_21 c_20 c_12 c_11 c_10 c_02 c_01 c_00

This shows that one can define an L-level Circulant matrix by a tensor of order L. By design circulant matrices
are always square matrices.

__init__QO
Initialize Multilevel Circulant matrix instance.

Also see the special options of fastmat.Fourier, which are also supported by this matrix and the general
options offered by fastmat.Matrix.__init__.

Parameters

tenC
[numpy .ndarray] The generating nd-array tensor defining the circulant matrix. The ma-
trix data type is determined by the data type of this array.

**options
[optional] Additional keyworded arguments. Supports all optional arguments supported by
fastmat.Matrix and fastmat.Fourier.

tenC

Return the matrix-defining column vector of the circulant matrix




fastmat, Release 0.2.2

6 Chapter 3. (Multilevel) Circulant Class



CHAPTER
FOUR

DIAGONAL MATRIX

class fastmat.Diag
Bases: Matrix

x> diag(dy,...,dy,) - x

A diagonal matrix is uniquely defined by the entries of its diagonal.

>>> # import the package

>>> import fastmat as fm

>>> import numpy as np

>>>

>>> # build the parameters
>>>n = 4

>>> = np.array([1l, 0, 3, 6])
>>>

>>> # construct the matrix
>>> D = fm.Diag(d)

o,

This yields

__init__O

Initialize a Diag matrix instance.
Parameters

vecD
[numpy .ndarray] The generating vector of the diagonal entries of this matrix.

**options
[optional] Additional keyworded arguments. Supports all optional arguments supported by
fastmat.Matrix.

vecD
Return the matrix-defining vector of diagonal entries.

(read-only)




fastmat, Release 0.2.2

8 Chapter 4. Diagonal Matrix



CHAPTER
FIVE

DIAGONAL BLOCK MATRIX

class fastmat.DiagBlocks

Bases: Matrix

For given n,m € N this class allows to define a block matrix M € C"™*™™_where each block is a diagonal
matrix D;; € C™*™. This obviously allows efficient storage and computations.

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

# import the package
import fastmat as fm
# define the sizes
n,m-= 2,
# define the diagonals
d = np.random.randn(
n,
n,
m)
# define the block
# matrix diagonal-wise
M = fm.DiagBlocks(d)

We have randomly drawn the defining elements d from a standard Gaussian distribution, which results in

dii,1 di21
di1,2 di2,2
M= dii3 di,2,3
da11 da 21
da1,2 da22
da13 do2.3

__init__O

Initialize DiagBlocks matrix instance.
Parameters

tenDiags
[numpy .ndarray] The generating 3d-array of the flattened diagonal tensor this matrix
describes. The matrix data type is determined by the data type of this array.

*koptions

[optional] Additional keyworded arguments. Supports all optional arguments supported by
fastmat.Matrix.




fastmat, Release 0.2.2

10 Chapter 5. Diagonal Block Matrix



CHAPTER
SIX

class fastmat.Eye

Bases: Matrix
For x € C™ we

map .. math::
X mapsto X.

note::

IDENTITY MATRIX

Eye.forward(x) returns the exact same object as the given input array x. Make sure to issue an explicit

.copy() in case you need it!

The identity matrix only needs the dimension n of the vectors it acts on.

>>> # import the package

>>> import fastmat

>>> # set the parameter
>>>n = 10

>>> # construct the identity
>>> I = fastmat.Eye(n)

This yields the identity matrix I;o with dimension 10.

__init__QO

Initialize Identity (Eye) matrix instance.
Parameters

order

[int] Size of the desired identity matrix [order x order].

**options

[optional] Additional keyworded arguments. Supports all optional arguments supported by

fastmat.Matrix.

11




fastmat, Release 0.2.2

12 Chapter 6. ldentity Matrix



CHAPTER
SEVEN

FOURIER MATRIX

class fastmat.Fourier
Bases: Matrix

The Fourier Transform realizes the mapping
T = Fy -,

where the Fourier matrix JF,, is uniquely defined by the size of the vectors it acts on.

>>> # import the package
>>> import fastmat as fm

>>>

>>> # define parameter
>>>n = 4

>>>

>>> # construct the matrix
>>> F = fm.Fourier(n)

This yields a Fourier /4 matrix of size 4. As a library to provide the Fast Fourier Transform we used the one

provided by NumPy.

Todo:

¢ real valued transforms

__init__QO

Initialize Fourier matrix instance.
Parameters

order
[int] The order of the DFT matrix represented by this matrix instance.

optimize
[bool, optional] Allow application of the Bluestein algorithm for badly conditioned fourier
transform orders.

Defaults to True.

maxStage
[int, optional] Specify the maximum butterfly element size for the FFT. Larger values can
reduce the required order for the FFTs computed in the Bluestein case. However, increasing
only makes sense as long as an efficient implementation of the butterfly structures exist in
your BLAS.

13




fastmat, Release 0.2.2

Defaults to 4, which is safe to assume on all architectures. However, most implementations
support sizes of 5 and on some cpu architectures, also 7.

**options
[optional] Additional optional keyworded arguments. Supports all optional arguments sup-
ported by fastmat.Matrix.

order

Return the Order of the Fourier matrix.

(read-only)

14 Chapter 7. Fourier Matrix



CHAPTER
EIGHT

HADAMARD MATRIX

class fastmat.Hadamard
Bases: Matrix

A Hadamard Matrix is recursively defined as

Hn == Hl ®Hn—17

where
1 1
m=li
and Hy = (1). Obviously the dimension of H,, is 2". The transform is realized with the Fast Hadamard
Transform (FHT).

>>> # import the package
>>> import fastmat as fm

>>>

>>> # define the parameter
>>>n = 4

>>>

>>> # construct the matrix
>>> H = fm.Hadamard(n)

This yields a Hadamard matrix 4 of order 4, i.e. with 16 rows and columns.
The algorithm we used is described in /2] and was implemented in Cython /3].
__init__QO

Initialize Hadamard matrix instance.

Parameters

order
[int] The order of the Hadamard matrix to generate. The matrix data type is numpy.int8

**gptions
[optional] Optional keyworded arguments. Supports all optional arguments supported by
fastmat.Matrix.
order

Return the order of the hadamard matrix.

15



fastmat, Release 0.2.2

16 Chapter 8. Hadamard Matrix



CHAPTER
NINE

KRONECKER PRODUCT

class fastmat.Kron
Bases: Matrix

For matrices A; € C™*"i fori = 1, ..., k the Kronecker product

A1® A ®---® Ay
can be defined recursively because of associativity from the Kronecker product of A € C"*" and B € C"**
defined as

a]_lB e almB
A® B = ) :
amB ... apmB
We make use of a decomposition into a standard matrix product to speed up the matrix-vector multiplication
which is introduced in /4]. This then yields multiple benefits:

* It already brings down the complexity of the forward and backward projection if the factors A; have no fast
transformations.

* It is not necessary to compute the matrix representation of the product, which saves a lot of memory.

* When fast transforms of the factors are available the calculations can be sped up further.

>>> # import the package
>>> import fastmat as fm

>>>
>>> # define the factors
>>> C = fm.Circulant (x_C)
>>> H = fm.Hadamard(n)
>>>

>>> # define the Kronecker
>>> # product
>>> P = fm.Kron(C.H, H)

Assume we have a circulant matrix C' with first column z. and a Hadamard matrix H,, of order n. Then we
define

P=Cc%"gH,.

17



fastmat, Release 0.2.2

__init__QO

Initialize a Kron matrix instance.
Parameters

*matrices
[fastmat.Matrix] The matrix instances to form a kronecker product of. Currently only
square matrices are supported as kronecker product terms.

**options

[optional] Additional keyworded arguments. Supports all optional arguments supported by
fastmat.Matrix.

18 Chapter 9. Kronecker Product



CHAPTER
TEN

LFSR CIRCULANT MATRIX

class fastmat.LFSRCirculant

Bases: Matrix

Linear Feedback Shift Registers (LFSR) as implemented in this class are finite state machines generating se-

quences of symbols from the finite field ' = [—1,+1]. A shift register of size N is a cascade of N storage
elements a,, forn = 0,..., N — 1, each holding one symbol of F'. The state of the shift register is defined by
the states of ag,...,an_1. [5]

The next state of the register is generated from the current state by moving the contents of each storage element
to the next lower index by setting a,,—1 = a, for n > 1, hence the name shift register. The element a( of the
current state is discarded completely in the next state. A subset 1" of all storage elements with cardinality of 1 or
greater is used for generating the next symbol a_; by multiplication within F'. T’ is called the tap configuration
of the shift register.

The output sequence of the register is the sequence of symbols aq for each state of the register. When the shift
register repeats one of its previous states after L state transistions, the output sequence also repeats and thus is
periodic with a length L. Evaluation of the sequence starts with all storage elements set to an initial state /. Only
periodic sequences of length L > 1 are considered if they also repeat all states including the initial state and thus
form a hamilton circle an the graph corresponding to the chosen shift register size N and tap configuration 7.

Instanciation of this matrix class requires supplying the requested register size N, the tap configuration and the
initial state. The latter two are required to be supplied as binary words of up to IV bits. A one bit on position ¢
in the tap configuration adds a; as *feedback tap* to 7T'. At least one feedback tap must be supplied. The bits in
the given initial state word r will be mapped to the initial register state, where r,, = Osets a,, = +landr, =1
sets a, = —1. If no r is given, it is assumed to be all-ones.

>>> # import the package

>>> import fastmat as fm

>>>

>>> # construct the parameter

>>> polynomial = 0b11001

>>> start = 0b1010

>>>

>>> # construct the matrix

>>> L = fm.LFSRCirculant(polynomial, start)
>>> s = L.vecC

This yields a Circulant matrix where the column-definition vector is the output of a LFSR of size 4, which is
configured to generate a maximum length sequence of length 15 and a cyclic shift corresponding to the given
initial state.

s=[+1,-1,+41,-1,-1,4+1,+1,-1,+1,+1,+1,-1, -1, -1, —1]

19



fastmat, Release 0.2.2

+1 -1 -1 ~1
1 41 -1 ... 41
L— |+l -1 +1 -1
-1 -1 -1 +1

This class depends on Hadamard.

__init__O
Initialize a LFSR Circulant matrix instance.

The definition vector of the circulant matrix is defined by the output [+1/-1] of a binary Linear Feedback
Shift Register (LFSR) with the given defining parameters over one period.

Parameters

polynomial
[int] The characteristic polynomial corresponding to the shift register sequence. Every set
bit k in this value corresponds to one feedback tap at storage element k of the register or the
monome x”k of the characterisctic polynomial that forms a cycle in the galois field GF2 of
the order corresponding to the highest non-zero monome x”K in the polynomial.

start
[int] The initial value of the storage elements of the register.

**options
[optional] Additional keyworded arguments. Supports all optional arguments supported by
fastmat.Matrix.

All optional arguments will be passed on to all fastmat.Matrix instances that are gener-
ated during initialization.

order
period
polynomial
size
Deprecated. Will be removed in future releases
start
states
Return the internal register states during the sequence.
(read-only)

taps
Deprecated. See .polynomial

vecC
Return the sequence defining the circular convolution.

(read only)

20 Chapter 10. LFSR Circulant Matrix



CHAPTER
ELEVEN

LOW RANK MATRIX

class fastmat.LowRank
Bases: Product

Generally one can consider the “complexity” of a matrix as the number of its rows n and columns m. The rank
of a matrix A € C"*™ always obeys the bound

rk(A4) < min{n, m}.

If one carries out the normal matrix vector multiplication, one assumes the rank to be essentially close to this
upper bound. However if the rank of A is far lower than the minimum of its dimensions, then one carries out a lot
of redundant tasks, when applying this matrix to a vector. But if one computes the singular value decomposition
(SVD) of A = UXVH, then one can express A as a sum of rank-1 matrices as

-

H

A= g iUV .
i=1

If » = rk(A) is much smaller than the minimum of the dimensions, then one can save a lot of computational
effort in applying A to a vector.

>>> # import the package
>>> import fastmat as fm
>>> import numpy as np

>>>

>>> # define all parameters
>>> S = np.random.randn(2)
>>> U = np.random.randn(20,2)
>>> V = np.random.randn(20,2)
>>>

>>> # define the matrix
>>> L = fm.LowRank(S, U, V)

We define a matrix L = USVH € R20%20 with rank 2.

__init__QO
Initialize a Low Rank matrix instance.

Parameters

vecS
[numpy .ndarray] The singular values as 1d vector corresponding to the singular value
decomposition of the matrix.

arrU
[numpy .ndarray] A 2d array corresponding to U of the singular value decomposition of
the matrix.

21



fastmat, Release 0.2.2

arrU
[numpy .ndarray] A 2d array corresponding to V of the singular value decomposition of
the matrix.

*koptions
[optional] Additional keyworded arguments. Supports all optional arguments supported by
fastmat.Matrix.

arrU

Return the array of left orthogonal vectors, i.e. the image
(read-only)

arrV

Return the array of right orthogonal vectors
the orthogonal complement of the kernel
(read-only)

vecS

Return the vector of non-zero singular values entries.

(read-only)

22 Chapter 11. Low Rank Matrix



CHAPTER
TWELVE

MATRIX BASE CLASS

class fastmat.Matrix

Bases: object

Matrix Base Class

Description: The baseclass of all matrix classes in fastmat. It also serves as wrapper around the standard Numpy

Array [1].
H

Return the hermitian transpose

(read-only)

Return the transpose of the matrix as fastmat class
(read-only)

__init__QO

Initialize an instance of a fastmat matrix.

This is the baseclass for all fastmat matrices and serves as a wrapper to define a matrix based on a two
dimensional ndarray. Any specialized matrix type in fastmat is derived from this base class and defines its

own __init__.

Every __init__ routine allows the specification of arbitrary keyworded arguments, which are passed in
**options. Each specialized __init__ routine processes the options it accepts and passes the rest on to the

initialization routines in the base class to define the basic behaviour of the class.
Parameters

arrMatrix
[numpy .ndarray] A 2d array representing a dense matrix to be cast as a fastmat matrix.

forceContiguousInput
[bool, optional] If set, the input array is forced to be contiguous in the style as specified by
fortranStyle. If the input array already fulfils the requirement nothing is done.

Defaults to False.

widenInputDatatype
[bool, optional] If set, the data type of the input array is promoted to at least match the
output data type of the operation. Just like the minType option this parameter controls the
accumulator width, however dynamically according to the output data type in this case.

Defaults to False.

23



fastmat, Release 0.2.2

fortranStyle
[bool, optional] Control the style of contiguousity to be enforced by forceConfiguousInput.
If this option is set to True, Fortran-style ordering (contiguous along columns) is enforced,
if False C-Style (contiguous along rows).

Defaults to True.

minType
[bool, optional] Specify a minimum data type for the input array to a transform. The input
array data type will be promoted to at least the data type specified in this option before
performing the actual transforms. Using this option is strongly advised for cases where
small data types of both input array and matrix could cause range overflows otherwise, as
the output data type promotion rules do not consider avoiding accumulator overflows due
to performance reasons.

Defaults to numpy . int8.

bypassAllow

[bool, optional] Allow bypassing the implemented fastmat.Matrix.forward() and
fastmat.Matrix.backward() transforms with dense matrix-vector products if runtime
estimates suggest this is faster than using the implemented transforms. This requires valid
calibration data to be available for the class of the to-be-created instance itself and the
fastmat.Matrix base class at the time the new instance is created. If no valid perfor-
mance calibration data exists this parameter is ignored and the implemented transforms
will be used always.

Defaults to the value set in the package-wide fastmat.flags options.

bypassAutoArray
[bool, optional] Prevents the automatic generation of a dense matrix representation that
would be used for bypassing the implemented transforms in case the performance profiles
suggest this would be faster, if set to True. This is heavily advised if the matrix is unfeasibly
large for a dense representation and does not feature fast transforms.

Defaults to the value as set in the package-wide :py:class fastmat.flags™ if no nested matrix
of this instance has set this option to False. If just one has, this parameter defaults to False.
If the matrix instance would disregard this, a nested instances’ AutoArray function would
be called implicitly through this instances’ dense array constructur although this is disabled
for the particular ndested matrix.

array

backward()
Backward Transform

Calculate the backward transform A”mathrm{H}*x where H is the hermitian transpose. Dimension-
checking is performed to ensure valid fast transforms as these may succeed even when dimensions do
not match. To support both single- and multidimensional input vectors X, single dimensional input will
be reshaped to (n, 1) before processing and flattened to (n) after completion. This allows the use of both
vectors and arrays. The actual transform code gets called by the callbacks specified in funcPython and
funcCython, depending on the state of self._cythonCall.

Warning: Do not override this method

Note: The returned ndarray object may own its data, may be a view into another ndarray and may even be

24

Chapter 12. Matrix Base Class



fastmat, Release 0.2.2

identical to the input array.

Parameters

arrX
[numpy .ndarray] The input data array of either 1d or 2d. 1d arrays will be reshaped to
2d during internal processing.

Returns
The result of the operation as np.ndarray with the

same number of dimensions as arrX.

bypassAllow

bypassAutoArray

colNormalized
Return a column normalized matrix for this instance
(read-only)

colNorms

Return the column norms for this matrix instance
(read-only)

complexity
Complexity

(read-only)

Return the computational complexity of all functionality implemented in the class itself, not including calls
of external code.

conj
Return the conjugate of the matrix as fastmat class
(read-only)

content

dtype

estimateRuntime()
Estimate the runtime of this matrix instances’ transforms.

Parameters

num Vectors
[int] Estimate the runtime for processing this number of vectors.

Returns

A tuple containing float estimates on the runtime of the
fastmat.Matrix. forward() and the
fastmat.Matrix.backward() transform if valid performance
profiles are available to this matrix instance. If not, return
(NaN, NaN)

25



fastmat, Release 0.2.2

forward()

Forward

Calculate the forward transform A * x. Dimension-checking is performed to ensure valid fast transforms
as these may succeed even when dimensions do not match. To support both single- and multidimensional
input vectors X, single dimensional input will be reshaped to (n, 1) before processing and flattened to (n)
after completion. This allows the use of both vectors and arrays. The actual transform code gets called by
the callbacks specified in funcPython and funcCython, depending on the state of self._cythonCall.

Warning: Do not override this method!

Note: The returned ndarray object may own its data, may be a view into another ndarray and may even be
identical to the input array.

Parameters

arrX
[numpy .ndarray] The input data array of either 1d or 2d. 1d arrays will be reshaped to
2d during internal processing.

Returns
The result of the operation as np.ndarray with the

same number of dimensions as arrX.

fusedType
getArray()
Return a dense array representation of this matrix.

getCol ()

Return a column by index.
Parameters
idx
[int] Index of the column to return.

Returns

1d-numpy .ndarray holding the specified column.

getColNormalized()
Return a column normalized version of this matrix as fastmat matrix.
getColNorms ()
Return a column normalized version of this matrix as fastmat matrix.
getCols()
Return a set of columns by index.
Parameters
indices
[int, slice or numpy.ndarray] If an integer is given, this is equal to the out-
put of getCol (indices). If a 1D vector or slice is given, a 2D

26 Chapter 12. Matrix Base Class



fastmat, Release 0.2.2

:py:class: numpy.ndarray() containing the columns as requested by indices is
returned.

Returns

1D or 2D (depending on type of indices) numpy .ndarray
holding the specified column(s).

getComplexity ()
Return a transform complexity estimate for this matrix instance.

Returns a tuple containing the complexity estimates for the fastmat.Matrix. forward() and fastmat.
Matrix.backward() transforms (in that order).

getConj()

Return the conjugate of this matrix as fastmat matrix.

getGram()

Return the gramian of this matrix as fastmat matrix.

getHO)

Return the hermitian transpose of this matrix as fastmat matrix.

getInverse()
Return the hermitian transpose of this matrix as fastmat matrix.

getLargestEigenValue()
Largest Singular Value

For a given matrix A € C"*™, so A is square, we calculate the absolute value of the largest eigenvalue
A € C. The eigenvalues obey the equation

A-v=\ v,

where v is a non-zero vector.

Input matrix A, parameter 0 < ¢ < 1 as a stopping criterion Output largest eigenvalue oyax(A)

Note: This algorithm performs well if the two largest eigenvalues are not very close to each other on a
relative scale with respect to their absolute value. Otherwise it might get trouble converging properly.

>>> # import the packages

>>> import numpy.linalg as npl
>>> import numpy as np

>>> import fastmat as fm

>>>

>>> # define the matrices
>>>n =5

>>> H = fm.Hadamard(n)

>>> D = fm.Diag(np.linspace
>>> 1, 2 ** n, 2 ** n))
>>>

>>> K1 = fm.Product(H, D)

>>> K2 = Kl.array

>>>

>>> # calculate the eigenvalue

(continues on next page)

27



fastmat, Release 0.2.2

(continued from previous page)

>>> x1 = Kl.largestEigenValue

>>> x2 npl.eigvals(K2)

>>> x2 = np.sort(np.abs(x2))[-1]
>>>

>>> # check if the solutions match
>>> print(xl - x2)

We define a matrix-matrix product of a Hadamard matrix and a diagonal matrix. Then we also cast it into a
numpy-array and use the integrated EVD. For demonstration, try to increase n>10"and see what happens.

getLargestEigenVec()
getLargestSingularValue()
Largest Singular Value

For a given matrix A € C™"*™, we calculate the largest singular value o,ax(A) > 0, which is the largest
entry of the diagonal matrix ¥ € C"*"™ in the decomposition

A=UxVH,

where U and V are matrices of the appropriate dimensions. This is done via the so called power iteration
of AH. A

* Input matrix A, parameter 0 < € < 1 as a stopping criterion

* Output largest singular value oyax(A)

Note: This algorithm performs well if the two largest singular values are not very close to each other on a
relative scale. Otherwise it might get trouble converging properly.

>>> # import packages

>>> import numpy.linalg as npl
>>> import numpy as np

>>> import fastmat

>>>

>>> # define involved matrices
>>>n =5

>>> H = fm.Hadamard(n)

>>> F = fm.Fourier(2**n)

>>> K1 = fm.Kron(H, F)

>>> K2 = K1

>>>

>>> # calculate the largest SV

>>> # and a reference solution

>>> x1 = largestSingularValue(K1l.largestSingularValue
>>> x2 = npl.svd(K2, compute_uv

>>> # check if they match

>>> print(x1-x2)

We define a Kronecker product of a Hadamard matrix and a Fourier matrix. Then we also cast it into
a numpy-array and use the integrated SVD. For demonstration, try to increase n to >/0 and see what
happens.

Returns

28

Chapter 12. Matrix Base Class



fastmat, Release 0.2.2

The largest singular value
getLargestSingularVectors()
getPseudoInverse()
Return the hermitian transpose of this matrix as fastmat matrix.

getRow()

Return a row by index.
Parameters
idx
[int] Index of the row to return.
Returns
1d-numpy .ndarray holding the specified row.

getRowNormalized()

Return a column normalized version of this matrix as fastmat matrix.

getRowNorms ()

Return a row normalized version of this matrix as fastmat matrix.

getRows ()
Return a set of rows by index.
Parameters
indices

[int, slice or numpy.ndarray] If an integer is given, this is equal to the out-
put of getRow’ (indices). If a 1D vector or slice is given, a 2D
:py:class: numpy.ndarray() containing the rows as requested by indices is
returned.

Returns

1D or 2D (depending on type of indices) numpy .ndarray
holding the specified row(s).

getScipyLinearOperator()
getTO
Return the transpose of this matrix as fastmat matrix.

gram
Return the gram matrix for this fastmat class

(read-only)

inverse

Return the inverse
(read-only)
largestEV
largestEigenValue
Return the largest eigenvalue for this matrix instance

(read-only)

29



fastmat, Release 0.2.2

largestEigenVec

Return the vector corresponding to the largest eigen value
(read-only)

largestSV

largestSingularValue
Return the largestSingularValue for this matrix instance
(read-only)

largestSingularVectors

Return the vectors corresponding to the largest singular value

This property returns a tuple (u, v) of the first columns of U and V in the singular value decomposition of
A=UsVH,

which means that the tuple contains the leading left and right singular vectors of the matrix
(read-only)

nbytes

nbytesReference

next()
Stop iteration as __iter__ redirected here. Python2-Style.

normalized
numCols
numM
numiN
numRows
numpyType
profileBackward
profileForward
pseudoInverse
Return the moore penrose inverse

(read-only)

reference()
Return explicit array reference of this matrix instance.

Return an explicit representation of the matrix without using any fastmat code. Provides type checks and
raises errors if the matrix type (self.dtype) cannot hold the reference data. This implementation is meant
to provide a reference version for testing and MUST not use any fastmat code for its implementation.

Returns

The array representation of this matrix instance as 2d
np.ndarray.

30 Chapter 12. Matrix Base Class



fastmat, Release 0.2.2

rowNormalized

Return a column normalized matrix for this instance
(read-only)

rowNorms

Return the row norms for this matrix instance
(read-only)

scipyLinearOperator

Return a Representation as scipy’s linear Operator

This property allows to make use of all the powerfull algorithms provided by scipy, that allow passing a
linear operator to them, like optimization routines, system solvers or decomposition algorithms.

(read-only)
shape

tag

31



fastmat, Release 0.2.2

32 Chapter 12. Matrix Base Class



THI

CHAPTER
RTEEN

OUTER PRODUCT

class fastmat.Outer

Bases: Matrix

The outer product is a special case of the Kronecker product of one-dimensional vectors. For given a € C™ and
b € C™ it is defined as

= a-b -z

It is clear, that this matrix has at most rank 1 and as such has a fast transformation.

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

# import the package
import fastmat as fm
import numpy as np

# define parameter
n, m=4,5

v = np.arange(n)

h = np.arange(m)

# construct the matrix
M = fm.Outer(v, h)

This yields

v=1(0,1,2,3,4)T

h=(0,1,2,3,4,5)"T
0
M:

0 = O

0
0
0
0

W = O
O =N O

3
6
9

—_
[\

__init__O

Initialize a Outer product matrix instance.
Parameters

arrV
[numpy .ndarray] A 1d vector defining the column factors of the resulting matrix

arrH
[numpy .ndarray] A 1d vector defining the row factors of the resulting matrix.

33




fastmat, Release 0.2.2

**options
[optional] Additional keyworded arguments. Supports all optional arguments supported by
fastmat.Matrix.

vecH

Return the matrix-defining vector of horizontal defining entries.
(read only)

vecV

Return the matrix-defining vector of vertical defining entries.

(read only)

34 Chapter 13. Outer Product



CHAPTER
FOURTEEN

class fastmat.Parametric

Bases: Matrix

PARAMETRIC MATRIX

Let fC? — C be any function and two vectors z € C™ and y € C" such that (z;,y;) € (f) fori € [n] and
J € [m]. Then the matrix F' € C™*™ is defined as

Fij = f(xj,v:)-

This class is not designed to be super fast, but memory efficient. This means, that everytime the forward or
backward projections are called, the elements are generated according to the specified function on the fly.

Note: For small dimensions, where the matrix fits into memory, it is definately more efficient to cast the matrix
to a regular Matrix object.

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

# import the package
import fastmat as fm

# define parameter
# function for the elements
def f(x, y):

return x ** 2 -y ** 2

# define the input array
# for the function f
X = np.linspace(l, 4, 4)

# construct the transform
F = fm.Parametric(x, x, f)

This yields

f:C—>C

(ml,xg)T — x? — x5

r=(1,2,3,4)T

1 3 8 15

-3 0 5 12
F=1_g 5 o 7

-15 —12 -7 0

35




fastmat, Release 0.2.2

We used Cython /3] to get an efficient implementation in order to reduce computation time. Moreover, it is
generally assumed the the defined function is able to use row and column broadcasting during evaluation. If this
is not the case, one has to set the flag rangeAccess to False.

__init__O
Initialize a Parametric matrix instance.
Parameters

vecX
[numpy .ndarray] A 1d vector mapping the matrix column index to the x-values of funF.

vecY
[numpy .ndarray] A 1d vector mapping the matrix row index to the y-values of funF.

funF
[callable with arguments (X, y)] A function returning the element at index (x, y).

funDtype
[numpy . dtype, optional] Data type of the values returned by funF

Not specified by default (determine the datatype from the element at the first index
funF(vecX][0], vecY[O0]).

rangeAccess
[bool, optional] Allow passing row- and column vectors directly to funF. This can lead to
significant speed-ups compared to single-element access.

Defaults to True.

**options
[optional] Additional optional keyworded arguments. Supports all optional arguments sup-
ported by fastmat.Matrix.

fun

Return the parameterizing function
(read only)

vecX

Return the support vector in X dimension.
(read only)

vecY

Return the support vector in Y dimension.

(read only)

36 Chapter 14. Parametric Matrix



CHAPTER
FIFTEEN

PARTIAL MATRIX

class fastmat.Partial

Bases: Matrix

Let I C {1,...,n}and J C {1,...,m} index sets and M € C"*™ a linear transform. Then the partial
transform M7 ; is defined as

zeC™— (M] . x!])iej.

In other words, we select the rows I of M and columns J of M and rows J of x.

>>> # import the package

>>> import fastmat as fm

>>> import numpy as np

>>>

>>> # define the index set

>>> a = np.arange(n)

>>> am = np.mod(a, 2)

>>> b = np.array(am, dtype='bool")
>>> I = al[bl]

>>>

>>> # construct the partial transform
>>> M = fm.Partial(F, I)

Let F be the n-dimensional Fourier matrix. And let I be the set of odd integers. Then we define a partial
transform as

M =F

__init__QO

Initialize a Partial matrix instance.
Parameters

mat
[fastmat.Matrix] A fastmat matrix instance subject to partial access.

rows
[numpy .ndarray, optional] A 1d vector selecting rows of mat.

If N is of type bool it’s size must match the height of mat and the values of N corresponds
to taking/dumping the corresponding row.

37



fastmat, Release 0.2.2

If N is of type int it’s values correspond to the indices of the rows of mat to select. The size
of N then matches the height of the partialed matrix.

Defaults to selecting all rows.

cols
[numpy .ndarray, optional] A 1d vector selecting columns of mat. The behaviour is iden-
tical to V.

Defaults to selecting all columns.

**options
[optional] Additional optional keyworded arguments. Supports all optional arguments sup-
ported by fastmat.Matrix.

colSelection

Return the support of the base matrix which defines the partial
Subselected columns
(read only)

indicesM

Deprecated. See .colSelection

indicesN

Deprecated. See .rowSelection

rowSelection

Return the support of the base matrix which defines the partial
Subselected rows

(read only)

38 Chapter 15. Partial Matrix



CHAPTER
SIXTEEN

PERMUTATION MATRIX

class fastmat.Permutation

Bases: Matrix

For a given permutation o € S,, and a vector x € C™ we map

€T (wg(i))?Zl .

>>> # import the package

>>> import fastmat

>>>

>>> # set the permutation

>>> sigma = np.array([3,1,2,0])
>>>

>>> # construct the identity

>>> P = fastmat.Permutation(sigma)

0 0 01
01 00
J= 0 010
1 0 0 0
__init__QO
Initialize a Permutation matrix instance.
Parameters
sigma
[numpy .ndarray] A 1d vector of type int mapping the row indices to column indices
uniquely.
**options

[optional] Additional keyworded arguments. Supports all optional arguments supported by
fastmat.Matrix.

sigma
Return the defining permutation

(read only)

39



fastmat, Release 0.2.2

40 Chapter 16. Permutation Matrix



CHAPTER
SEVENTEEN

MATRIX POLYNOMIAL

class fastmat.Polynomial
Bases: Matrix

For given coefficients ay, . . ., ag € C and a linear mapping A € C"*", we define
M=a, A"+ a,_ 1 A" '+ a1 A+ agl.

The transform M - x can be calculated efficiently with Horner’s method.

>>> # import the package

>>> import fastmat as fm

>>>

>>> # define the transforms

>>> H = fm.Hadamard(n)

>>>

>>> # define the coefficient array
>>> arr_a = [1, 2 + 1j, -3.0, 0.0]
>>>

>>> # define the polynomial

>>> M = fm.Polynomial (H, arr_a)

Let H,, be the Hadamard matrix of order n. And let a = (1,2 + 4, —3,0) € C* be a coeflicient vector, then the
polynomial is defined as

M = H?+ (2+4i)H2 — 3H,.

__init__O
Initialize a Polynomial matrix instance.
Parameters

mat
[fastmat.Matrix] A fastmat matrix instance subject to constructing the polynomial.

coeff
[numpy .ndarray] A 1d vector defining the polynomial coefficients.

**options
[optional] Additional keyworded arguments. Supports all optional arguments supported by
fastmat.Matrix.

41



fastmat, Release 0.2.2

coeff

Return the polynomial coefficient vector.

(read only)

42 Chapter 17. Matrix Polynomial



CHAPTER
EIGHTEEN

MATRIX-MATRIX PRODUCT

class fastmat.Product
Bases: Matrix

M=]]A

i

where the A; can be fast transforms of *any* type.

>>> # import the package

>>> import fastmat as fm

>>>

>>> # define the product terms
>>> A = fm.Circulant(x_A)

>>> B fm.Circulant (x_B)

>>>

>>> # construct the product
>>> M = fm.Product(A.H, B)

Assume we have two circulant matrices A and B. Then we define

M = AlB,.

__init__QO

Initialize a Product matrix instance.
Parameters

*matrices
[fastmat.Matrix or scalar value] The matrix instances to form a matrix-matrix product
of. You may also specify scalar values.

typeExpansion
[bool, optional] Expand the data type of input data to the data type specified with this
paramter.

Defaults to a floating-point expansion of the promoted type of all nested matrices’ (and
scalar values’) data types.

**options
[optional] Additional optional keyworded arguments. Supports all optional arguments sup-
ported by fastmat.Matrix.

43




fastmat, Release 0.2.2

44 Chapter 18. Matrix-Matrix Product



CHAPTER
NINETEEN

SPARSE MATRIX

class fastmat.Sparse
Bases: Matrix

T S,
where S is a scipy.sparse matrix. To provide a high level of generality, the user has to make use of the standard

scipy.sparse matrix constructors and pass them to fastmat during construction. After that a Sparse matrix
can be used like every other type in fastmat

>>> # import the package

>>> import fastmat as fm

>>>

>>> # import scipy to get

>>> # the constructor

>>> import scipy.sparse.rand as r
>>>

>>> # set the matrix size

>>> n = 100

>>>

>>> # construct the sparse matrix
>>> S = fm.Sparse(

>>> r(

>>> n,

>>> n,

>>> 0.01,

>>> format="csr'
>>> ))

This yields a random sparse matrix with 1% of its entries occupied drawn from a random distribution.

It is also possible to directly cast SciPy sparse matrices into the fastmat * sparse matrix format as follows.

>>> # import the package

>>> import fastmat as fm

>>>

>>> # import scipy to get

>>> # the constructor

>>> import scipy.sparse as ss

>>>

>>> # construct the SciPy sparse matrix
>>> S_scipy = ss.csr_matrix(

(continues on next page)

45



fastmat, Release 0.2.2

(continued from previous page)

>>> [

>>> [1, ®, 0],

>>> [1, ®, 0],

>>> [0, 0, 1]

>>> ]

>>> )

>>>

>>> # construct the fastmat sparse matrix
>>> S = fm.Sparse(S_scipy)

Note: The format specifier drastically influences performance during multiplication of these matrices. From
our experience 'csr' works best in these cases.

For this matrix class we used the already tried and tested routines of SciPy /], so we merely provide a convenient
wrapper to integrate nicely into fastmat.

__init__O

Initialize a Sparse matrix instance.
Parameters

matSparse
[scipy.sparse.spmatrix] A 2d scipy sparse matrix to be cast as a fastmat matrix.

**options
[optional] Additional optional keyworded arguments. Supports all optional arguments sup-
ported by fastmat.Matrix.

spArray
Return the scipy sparse matrix .

(read only)
spArrayH

Return the scipy sparse matrix’ hermitian transpose.

(read only)

46 Chapter 19. Sparse Matrix



CHAPTER
TWENTY

MATRIX SUM

class fastmat.Sum

Bases: Matrix

For matrices A, € C"*" with k = 1, ..., N we define a new mapping M as the sum
N
oY a
k=1

which then also is a mapping in C"™*™.

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

# import the package
import fastmat as fm

define the components
fm.Circulant (x_A)
fm.Circulant (x_B)
fm.Fourier(n)
fm.Diag(x_D)

O N W e %
I

# construct the sum of transformations
M = fm.Sum(A, B, C, D)

Assume we have two circulant matrices A and B, an N-dimensional Fourier matrix C' and a diagonal matrix D.
Then we define

M=A+B+C+D.

__init__QO

Initialize a Sum matrix instance.
Parameters

*matrices
[fastmat.Matrix] The matrix instances to be summed.

**options
[optional] Additional optional keyworded arguments. Supports all optional arguments sup-
ported by fastmat.Matrix.

47




fastmat, Release 0.2.2

48 Chapter 20. Matrix Sum



CHAPTER
TWENTYONE

class fastmat.Toeplitz

Bases: Partial

(MULTILEVEL) TOEPLITZ CLASS

This class provides a very general implementation of Toeplitz matrices, which essentially realize a (possibly
multidimensional) non-circular convolution.

This type of matrix is highly structured

. A two-level Toeplitz Matrix looks like:

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

t_00
t_01
t_02

t_10
t_11
t_12

t_20
t_21
t_22

t_05
t_00
t_01

t_15
t_10
t_11

t_25
t_20
t_21

t_04
t_05
t_00

t_14
t_15
t_10

t_24
t_25
t_20

t_03
t_04
t_05

t_13
t_14
t_15

t_23
t_24
t_25

t_40
t_41
t_42

t_00
t_01
t_02

t_10
t_11
t_12

t_45
t_40
t_41

t_05
t_00
t_01

t_15
t_10
t_11

t_44
t_45
t_40

t_04
t_05
t_00

t_14
t_15
t_10

t_43
t_44
t_45

t_03
t_04
t_05

t_13
t_14
t_15

t_30
t_31
t_32

t_40
t_41
t_42

t_00
t_01
t_02

t_35
t_30
t_31

t_45
t_40
t_41

t_05
t_00
t_01

t_34
t_35
t_30

t_44
t_45
t_40

t_04
t_05
t_00

t_33
t_34
t_35

t_43
t_44
t_45

t_03
t_04
t_05

This shows that one can define an L-level Toeplitz matrix by a tensor of order L together with means of deciding

the sizesn_1, ...

__init__QO

Initialize Toeplitz matrix instance.

,n_L of the individual levels.

One either has to specify (vecC, vecR) or tenT with optinal split argument.

Parameters

tenT
[numpy .ndarray] This is the most general way to define a (multilevel) Toeplitz Matrix.
The number of dimensions (length of .shape) determines the number of levels. If split is not
defined then tenT needs to have odd size in each dimension, so that this results in a square
matrix. The handling of the indexing in direction of columns follows the same reversed
fashion as in the one-dimensional case with vecR, but here naturally for each level.

split
[numpy .ndarray, optional] This vector needs to have as many elements as the number of
elements of tenT.shape. If it is specified it defines the number of elements which are used
to determine the number of rows of each level. The rest of the elements are indexed in
reverse order in the same fashion as without split.

49




fastmat, Release 0.2.2

**options
[optional] Additional keyworded arguments. Supports all optional arguments supported by
fastmat.Matrix and fastmat.Fourier.

All optional arguments will be passed on to all fastmat.Matrix instances that are gener-
ated during initialization.

Note:
For backward compatibility reasons it is still possible to substitute the tenT argument by
two 1D numpy .ndarray arrays vecC and vecR that describe the column- and row-defining
vectors in the single-level case respectively. The column-defining vector describes the forst
column of the resulting matrix and the row-defining vector the first row except the (0,0)
element (which is already specified by the column-defining vector). Note that this vector
is indexed backwards in the sense that its first element is the last element in the defined
Toeplitz matrix.
tenT

Return the defining Tensor of Toeplitz matrix.
vecC

Return the column-defining vector of Toeplitz matrix.
vecR

Return the row-defining vector of Toeplitz matrix.

50

Chapter 21. (Multilevel) Toeplitz Class



CHAPTER
TWENTYTWO

TRANSPOSITION AND RELATED CLASSES

class fastmat.Transpose

Bases: Hermitian
Transpose of a Matrix

__init__QO

Initialize an instance of a transposed matrix.
Parameters

matrix
[fastmat.Matrix] The matrix instance to be transposed.

class fastmat.Hermitian

Bases: Matrix
Hermitian Transpose of a Matrix

__init__QO

Initialize an instance of a hermitian transposed matrix.
Parameters

matrix
[fastmat.Matrix] The matrix instance to be transposed.

class fastmat.Conjugate
Bases: Matrix

Conjugate of a Matrix

__init__QO

Initialize an instance of a conjugated matrix.
Parameters

matrix
[fastmat.Matrix] The matrix instance to be conjugated.

51



fastmat, Release 0.2.2

52 Chapter 22. Transposition and Related Classes



CHAPTER
TWENTYTHREE

ZERO MATRIX

class fastmat.Zero

Bases: Matrix
z—0

The zero matrix only needs the dimension n of the vectors it acts on. It is very fast and very good!

>>> import fastmat as fm

>>>

>>> # define the parameter
>>>n = 10

>>>

>>> # construct the matrix
>>> 0 = fm.Zero(n)

__init__QO
Initialize Zero matrix instance.

Parameters

numRows
[int] Height (row count) of the desired zero matrix.

numCols
[int] Width (column count) of the desired zero matrix.

**options
[optional] Additional keyworded arguments. Supports all optional arguments supported by
fastmat.Matrix.

Here we list the classes in the package for easy referencing and access.
e fastmat.Matrix base class, the mother of all matrices.
e fastmat.BlockDiag
e fastmat.Blocks
e fastmat.Circulant
e fastmat.Conjugate
e fastmat.Diag
e fastmat.DiagBlocks

e fastmat.Eye

53



fastmat, Release 0.2.2

fastmat.

fastmat
fastmat
fastmat
fastmat

fastmat

fastmat.

fastmat.

fastmat
fastmat

fastmat

fastmat.
fastmat.
fastmat.
fastmat.

fastmat.

fastmat

Fourier

.Hadamard
.Hermitian
.Kron
.LFSRCirculant
.LowRank

Outer

Parametric

.Partial
.Permutation

.Polynomial

Product
Sparse
Sum
Toeplitz

Transpose

.Zero

54

Chapter 23. Zero Matrix



CHAPTER
TWENTYFOUR

ALGORITHM INDEX

24.1 Algorithm Base Class

class fastmat.algorithms.Algorithm

Bases: object
Algorithm Base Class

The baseclass of all algorithms that operate on Matrices. This abstract baseclass introduces general framework
concepts such as interfaces for parameter specification, algorithm execution, logging and callbacks.

>>> algI = fma.ISTA(Fourier(10))

>>> algI.cbResult = lambda i: print(i.arrResult)

>>> algI.cbStep = lambda i: print(i.numStep)

>>> algIl.cbTrace = fma.Algorithm.snapshot

>>> algIl.process(np.ones(10) + np.random.randn(10))

>>> plt.imshow(np.hstack((np.abs(tt.arrX) for tt in algI.trace)))
>>> plt.show()

__init__(*args, **kwargs)
cbResult
cbTrace
handleCallback()
Call the callback if it is not None.
nbytes
process()
Process an array of data by the algorithm.

This method also accepts passing additional parameters as keyworded arguments. These arguments will be
applied to the algorithm instance using self.updateParameters().

If no additional parameters are required the self._process() method may also be called directly for slightly
higher call performance.

snapshot ()

Add the current instances’ state (without the trace) to the trace.

trace

55



fastmat, Release 0.2.2

updateParameters()
Update the parameters of the algorithm instance with the supllied keyworded arguments.
Apply the set of parameters specified in kwargs by iteratively passing them to setattr(self, ...). Specifying

an parameter which does not have a mathing attribute in the algorithm class will cause an AttributeError
to be raised.

24.2 FISTA Algorithm

class fastmat.algorithms.FISTA(finatA, **kwargs)

Bases: Algorithm
Fast Iterative Shrinking-Thresholding Algorithm (FISTA)

Definition and Interface: For a given matrix A € C"™*"V with m < N and a vector b € C" we approximately
solve

in ||A-z—b|3+\-
nin |4z — b3 + A lalls,

where A > 0 is a regularization parameter to steer the trade-off between data fidelity and sparsity of the solution.

>>> # import the packages

>>> import numpy.linalg as npl

>>> import numpy as np

>>> import fastmat as fm

>>> import fastmat.algorithms as fma

>>> # define the dimensions and the sparsity
>>>n, k = 512, 3

>>> # define the sampling positions

>>> t = np.linspace(®, 20 * np.pi, n)

>>> # construct the convolution matrix

>>> ¢ = np.cos(2 * t) * np.exp(-t ** 2)

>>> C = fm.Circulant(c)

>>> # create the ground truth

>>> x = np.zeros(n)

>>> x[np.random.choice(range(n), k, replace=0)] =1
>>>b =C * x

>>> # reconstruct it

>>> fista = fma.FISTA(C, numLambda=0.005, numMaxSteps=100)
>>> y = fista.process(b)

>>> # test if they are close in the

>>> # domain of C

>>> print(apl.norm(C * y - b))

We solve a sparse deconvolution problem, where the atoms are harmonics windowed by a gaussian envelope.
The ground truth x is build out of three pulses at arbitrary locations.

Note: The proper choice of A is crucial for good perfomance of this algorithm, but this is not an easy task.
Unfortunately we are not in the place here to give you a rule of thumb what to do, since it highly depends on the
application at hand. Again, consult [1] for any further considerations of this matter.

Parameters

56

Chapter 24. Algorithm Index




fastmat, Release 0.2.2

fmatA
[fm.Matrix] the system matrix

arrB
[np.ndarray] the measurement vector

numLambda
[float, optional] the thresholding parameter; default is 0.1

numMaxSteps
[int, optional] maximum number of steps; default is 100

Returns
np.ndarray

solution array

__init__(finatA, **kwargs)

softThreshold (arrX, numAlpha)
Do a soft thresholding step.

24.3 ISTA Algorithm

class fastmat.algorithms.ISTA(finatA, **kwargs)
Bases: Algorithm

Iterative Soft Thresholding Algorithm

Definition and Interface: For a given matrix A € C"™*" with m < N and a vector b € C™ we approximately

solve

. 2
i 42 = Bl + A~ ol

where A > 0 is a regularization parameter to steer the trade-off between data fidelity and sparsity of the solution.

>>> # import the packages

>>> import numpy.linalg as npl

>>> import numpy as np

>>> import fastmat as fm

>>> import fastmat.algorithms as fma

>>> # define the dimensions and the sparsity

>>>n, k = 512, 3

>>> # define the sampling positions

>>> t = np.linspace(®, 20 * np.pi, n)

>>> # construct the convolution matrix

>>> ¢ = np.cos(2 * t) * np.exp(-t ** 2)

>>> C = fm.Circulant(c)

>>> # create the ground truth

>>> X = np.zeros(n)

>>> x[np.random.choice(range(n), k, replace=0)] =1
>>>b =C * x

>>> # reconstruct it

>>> ista = fma.ISTA(C, numLambda=0.005, numMaxSteps=100)
>>> y = ista.process(b)

(continues on next page)

24.3. ISTA Algorithm

57




fastmat, Release 0.2.2

(continued from previous page)

>>> # test if they are close in the
>>> # domain of C
>>> print(npl.norm(C * y - b))

We solve a sparse deconvolution problem, where the atoms are harmonics windowed by a gaussian envelope.
The ground truth x is build out of three pulses at arbitrary locations.

Note: The proper choice of A is crucial for good perfomance of this algorithm, but this is not an easy task.
Unfortunately we are not in the place here to give you a rule of thumb what to do, since it highly depends on the
application at hand. Again, consult [1] for any further considerations of this matter.

Parameters

fmatA
[fm.Matrix] the system matrix

arrB
[np.ndarray] the measurement vector

numLambda
[float, optional] the thresholding parameter; default is 0.1

numMaxSteps
[int, optional] maximum number of steps; default is 100

Returns
np.ndarray

solution array

__init__ (fmatA, **kwargs)

softThreshold (arrX, numAlpha)
Do a soft thresholding step.

24.4 OMP Algorithm

class fastmat.algorithms.OMP
Bases: Algorithm

Orthogonal Matching Pursuit

Definition and Interface: For a given matrix A € C"™*" with m < N and a vector b € C™ we approximately
solve

min ||zl st. A-z ==z
zeCN

If it holds that b = A - xg for some k-sparse z and k is low enough, we can recover xy via OMP [1].

This type of problem as the one described above occurs in Compressed Sensing and Sparse Signal Recovery,
where signals are approximated by sparse representations.

58 Chapter 24. Algorithm Index



fastmat, Release 0.2.2

>>> # import the packages

>>> import numpy.linalg as npl

>>> import numpy as np

>>> import fastmat as fm

>>> import fastmat.algorithms as fma
>>> # define the dimensions

>>> # and the sparsity

>>>n, k = 512, 3

>>> # define the sampling positions
>>> t = np.linspace(®, 20 * np.pi, n)
>>> # construct the convolution matrix
>>> ¢ = np.cos(2 * t)

>>> C = fm.Circulant(c)

>>> # create the ground truth

>>> x = np.zeros(n)

>>> x[np.random.choice(range(n), k, replace=0)] =1
>>>b =C * x

>>> # reconstruct it

>>> omp = fma.OMP(C, numMaxSteps=100)
>>> y = omp.process(b)

>>> # test if they are close in the
>>> # domain of C

>>> print(npl.norm(C * y - b))

We describe a sparse deconvolution problem, where the signal is in R

and consists of 3 windowed cosine

pulses of the form c with circulant displacement. Then we take the convolution and try to recover the location of

the pulses using the OMP algorithm.

Note: The algorithm exploits two mathematical shortcuts. First it obviously uses the fast transform of the
involved system matrix during the correlation step and second it uses a method to calculate the pseudo inverse

after a rank-1 update of the matrix.

Todo:

* optimize einsum-stuff

Parameters

fmatA
[fm.Matrix] the system matrix

arrB
[np.ndarray] the measurement vector

numMaxSteps
[int] the desired sparsity order

Returns

np.ndarray
solution array

24.4. OMP Algorithm

59




fastmat, Release 0.2.2

__init__(*args, **kwargs)
arrA

arrB

arrC
arrResidual
arrSupport
arrX
arrXtmp
fmatA

fmatC
matPinv
newCols
newIndex
numL

numM
numMaxSteps
numN
numStep

v2

van

v2y

24.5 STELA Algorithm

class fastmat.algorithms.STELA(finatA, **kwargs)

Bases: Algorithm
Soft-Thresholding with simplified Exact Line search Algorithm (STELA)
The algorithm is presented in [1] with derivation and convergence results.

Definition and Interface: For a given matrix A € C™*" with m < N and a vector b € C™ we approximately
solve

in ||A-x—b|3+\-
nin |42 — b3 + A flalls,

where A > 0 is a regularization parameter to steer the trade-off between data fidelity and sparsity of the solution.

60

Chapter 24. Algorithm Index



fastmat, Release 0.2.2

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

# import the packages

import numpy.linalg as npl

import numpy as np

import fastmat as fm

import fastmat.algorithms as fma

# define the dimensions and the sparsity
n, k = 512, 3

# define the sampling positions

t = np.linspace(®, 20 * np.pi, n)

# construct the convolution matrix

c =np.cos(2 * t) * np.exp(-t ** 2)

C = fm.Circulant(c)

# create the ground truth

X = np.zeros(n)
x[np.random.choice(range(n), k, replace=0)] =1
b=C*x

# reconstruct it

stela = fma.STELA(C, numLambda=0.005, numMaxSteps=100)
y = stela.process(b)

# test if they are close in the

# domain of C

print(npl.norm(C * y - b))

We solve a sparse deconvolution problem, where the atoms are harmonics windowed by a gaussian envelope.
The ground truth x is build out of three pulses at arbitrary locations.

Note: The proper choice of A is crucial for good perfomance of this algorithm, but this is not an easy task.
Unfortunately we are not in the place here to give you a rule of thumb what to do, since it highly depends on the
application at hand. Again, consult [1] for any further considerations of this matter.

Parameters

fmatA
[fm.Matrix] the system matrix

arrB
[np.ndarray] the measurement vector

numLambda
[float, optional] the thresholding parameter; default is 0.1

numMaxSteps
[int, optional] maximum number of steps; default is 100

numMaxError
[float, optional] maximum error tolerance; default is 1e-6

Returns

np.ndarray
solution array

__init__(fmatA, **kwargs)

24.5. STELA Algorithm 61




fastmat, Release 0.2.2

softThreshold (arrX, numAlpha)
Do a soft thresholding step.

Here we list the specialized algorithms in the package for easy referencing and access.

e fastmat.

e fastmat.

e fastmat
e fastmat

e fastmat

algorithms.Algorithm base class, the mother of all algorithms.

algorithms

.algorithms
.algorithms.
.algorithms

.FISTA
.ISTA
oMpP
.STELA

62

Chapter 24. Algorithm Index



CHAPTER
TWENTYFIVE

ARCHITECTURE

25.1 Matrix Class Model
25.2 Algorithm Class Model

25.3 SciPy Interface

25.3.1 Motivation

SciPy offers a large zoo of algorithms which exploit the possibility to pass a so called LinearOperator, which only
provides methods for forward and backward transforms together with some simple properties like a datatype and shape
parameters. This is exactly what we can provide for a specific instance of a fastmat Matrix. To this end, each fastmat
Matrix has the (read only) property scipyLinearOperator, which provides a SciPy Linear operator realizing the transform
specified by the fastmat object.

This allows to combine fastmat and SciPy in the most efficient manner possible. Here, fastmat provides the simple and
efficient description of a huge variety of linear operators, which can then be used neatly and trouble free in SciPy.

25.3.2 Usage

The interface is provided by the factory fastmat.Matrix.scipyLinearOperator (), which returns an instance of
scipy.sparse.linalg.LinearOperator. All fastmat matrices can be used from scipy methods supporting this
interface, offering a wide range of functionality — by combining both worlds — to the user.

For a code example, see Solve a System of Linear Equations with Preconditioning.

25.4 Data Types in fastmat

To achieve high performance, fastmat is designed to support common data types only, namely
* Floating point with single and double precision (float32 and float64)
* Complex floating point with single and double precision (complex64 and complexi28)
* Signed integer of selected fixed sizes (inf8, int16, int32, int64)

Some implementation of fastmat matrices use numpy under the hood. Although those could technically be able to deal
with other data types offered by numpy as well, using other types than those listed above is disencouraged. This is
important to ensure consistency throughout the intestines of fastmat, which is important for being able to reliably test
the package.

63



fastmat, Release 0.2.2

The following sections detail the organization and handling of types in fastmat and explain the mechanisms how
fastmat handles type promotion. The final section references the internal type API of fastmat.

25.4.1 Type handling

ftype

To distinguish between the supported data types fastmat uses the ftype internally as type identifier. All data type
checks within the package as well as the type promotion logic is internally handled via these type numbers, that corre-
spond directly to the associated numpy . dtype given in this table:

Data Type numpy .dtype fast- | Short

mat

ftype
Signed Integer § bit Signed Integer 16 bit Signed Integer | int8_t intl6_t int32_t | 012 | i8 il16i32
32 bit Signed Integer 64 bit Single-precision Float Double- | int64_t float32_t | 345 | i64 32
Precision Float Single-Precision Complex Double-Precision | float64_t  complex64_t | 67 fo4 c64
Complex complex128_t cl28

25.4.2 Type promotion

Type promotion matrix of binary operators of kind £(A, B) as used throughout fastmat:

Type promotion B
int float complex
i8 i16 i32 i64 32 fo4 c64 | c128
A int 8 i8 il6 i32 i64 32 fo4 c64 | cl28
int 16 i16 i16 i32 i64 32 fo4 c64 | c128
int 32 i32 i32 i32 i64 fo4 fo4 cl28 | c128
int 64 i64 i64 i64 i64 fo4 fo4 cl128 | c128
float 32 32 32 fo4 fo4 fo4 fo4 cl28 | c128
float 64 fo4 fo4 fo4 fo4 fo4 fo4 cl128 | c128
complex 64 | c64 | c64 | cl28 | c128 | c64 | cl28 | c64 | cl128
complex 128 | c128 | c128 | c128 | c128 | c128 | c128 | c128 | c128

Example:
The forward operator of a fastmat.Matrix of type float 32 will, if provided with an int 32 input vector, yield
an output vector of type float 64.

Note: The output data type will be expanded to fit the mantissa of any of the operands best. As int 32 has a wider
mantissa than float 32 offers, the example type promotion will yield float 64 to maintain accuracy.

Note: Data types will not be expanded automatically to the next larger data type for the sake of preventing overflows.
You’ll need to specifically expand the data type — where necessary — by specifying minType=7 during the generation
of your fastmat.Matrix instance.

64 Chapter 25. Architecture



fastmat, Release 0.2.2

25.4.3 fastmat.core.types

fastmat.core.types.getFusedType()

Return fastmat type number for a given data type (or array).
Parameters

obj
[object] The object type or numpy.ndarray to query for.

Returns

ftype
The fastmat type number for that type.

Raises

TypeError
When the type is not supported by fastmat.

fastmat.core.types.getNumpyType ()

Return numpy type number for a given data type (or array).
Parameters

obj
[object] The object type or numpy.ndarray to query for.

Returns

ntype
The numpy type number for that type.

Raises

TypeError
When the type is not supported by fastmat.

fastmat.core.types.getTypeEps()
Return eps for a given data type (or array).

Parameters

obj
[object] The object type or numpy.ndarray to query for.

Returns

np.float64_t
The epsilon value for that type.

Raises

TypeError
When the type is not supported by fastmat.

fastmat.core.types.getTypeMax()
Return the maximum representable value for a given data type (or array).

Parameters

obj
[object] The object type or numpy.ndarray to query for.

Returns

25.4. Data Types in fastmat

65



fastmat, Release 0.2.2

np.float64_t
The maximum representable value for that type.

Raises

TypeError
When the type is not supported by fastmat.

fastmat.core.types.getTypeMin()
Return the minimum representable value for a given data type (or array).

Parameters

obj
[object] The object type or numpy.ndarray to query for.

Returns

np.float64_t
The minimum representable value for that type.

Raises

TypeError
When the type is not supported by fastmat.

fastmat.core.types.isComplex()
Return whether a given data type or an array’s data type is complex.

Parameters

obj
[object] The object type to query for.

Returns

bool
True if the data type is of complex kind.

Raises

TypeError
When the type is not supported by fastmat.

fastmat.core.types.isFloat()
Return whether a given data type or an array’s data type is floating point.

Parameters

obj
[object] The object type to query for.

Returns

type
True if the data type is of floating point kind.

Raises

TypeError
When the type is not supported by fastmat.

fastmat.core.types.isInteger()

Return whether a given data type or an array’s data type is integer.

66 Chapter 25

. Architecture



fastmat, Release 0.2.2

Parameters

obj
[object] The object type to query for.

Returns

type
True if the data type is of integer kind.

Raises

TypeError
When the type is not supported by fastmat.

fastmat.core.types.safeTypeExpansion()

Return a floating type expanding the given type with full accuracy.
Parameters

dtype
[object] A type object to be expanded to float without numerical accuracy loss.

Returns

object
The safely expanded datatype

25.5 Performance Interface to numpy C-API

25.5.1 fastmat.core.cmath

fastmat.core.cmath.profileCall()

Measure the runtime of a function call with arguments by averaging the cumulated runtime of multiple calls.

To avoid unpacking arguments each time the function is called calls with one or two arguments get unpacked
before the measurement, thus excluding argument unpacking in this case effectively.

Parameters

reps
[int] The number of repetitions of call() in one runtime measurement.

call
[callable] The function to be called

args
[iterable] The positional arguments to be passed to call

Returns
dict
The dictionary contains the following key:value pairs: avg
[float] The average runtime of a single call to call(*args)
time
[float] The accumulated runtime of reps calls to call (*args)

cnt
[int] The total count of calls to call (*args)

25.5. Performance Interface to numpy C-API 67



fastmat, Release 0.2.2

25.6 Low-Overhead Array Striding Interface

Fastmat offers a special C-level interface allowing the creation, processing and manipulation of views into the under-
lying data of numpy.ndarray objects without the overhead of creating view or memoryview objects of that array
object. As the implementation is based on C structures, no interaction with the python object interface is necessary,
thus increasing the efficiency of advanced linear operators from within cython code. By mimimizing memory opera-
tions occuring during view creation, structure- or object allocation or copying, this helps minimizing the already low
overhead on using cython memoryviews further.

The main container for defining and using strides is the STRIDE_s structure:

ctypedef struct STRIDE_s:

char * base

intsize strideElement
intsize strideVector
intsize numElements
intsize numVectors
np.uint8_t sizeltem
ftype dtype

fastmat Type Identifier
The striding interface supports:
* Two-dimensional numpy .ndarray objects
» Non-contiguous (striding) access into the data

* Modifying views (substriding
25.6.1 fastmat.core.strides

25.7 Calibration and Runtime Optimization

25.7.1 fastmat.core.calibration

fastmat.core.calibration.calibrateAll (**options)

Calibrate all classes present in fastmat.
Parameters

**options
[dict] Additional keyworded arguments that will be passed on to calibrateClass()
calls. Note: The verbose option will be digested by this function and not passed on to
calibrateClass().

Returns
None

fastmat.core.calibration.calibrateClass (target, **options)

Calibrate a fastmat matrix baseclass using the specified benchmark.

The generated calibration data will be cached in cal/Data and is then available during instantiation of upcoming
fastmat classes and can be imported/exported to disk using the routines loadCalibration and saveCalibration.

Parameters

68 Chapter 25. Architecture




fastmat, Release 0.2.2

target
[Matrix] The Matrix class to be calibrated. Any existing calibration data will be overwritten
when the calibration succeeded.

benchmarkOnly
[bool, optional] If true, only perform the benchmark evaluation and do not generate calibra-
tion data (or update the corresponding entries in calData).

Defaults to False.

verbose
[bool, optional] Controls the BENCH.verbosity flag of the BENCH instance, resulting in in-
creased verbosity during the test.

Defaults to False.

maxIter
[float, optional] Additional benchmark option that will be passed on to the evaluation. Abort
iteration if evaluation of one problem takes more than this amount of seconds.

Defaults to 0.1.

maxInit
[float, optional] Additional benchmark option that will be passed on to the evaluation. Abort
iteration if preparation of one problem takes more than this amount of seconds.

Defaults to 0.1.

maxSize
[float, optional] Additional benchmark option that will be passed on to the evaluation. Abort
iteration if this problem size is exceeded.

Defaults to 1000000 (one million).

maxMem
[float, optional] Additional benchmark option that will be passed on to the evaluation. Abort
iteration if memory usage exceeds this amount of kiB.

Defaults to 100000 (100 MB).

minltems
[int, optional] Additional benchmark option that will be passed on to the evaluation. Require
the evaluation of at least this number of different problem sizes.

Defaults to 3.

measMinTime
[float, optional] Additional benchmark option that will be passed on to the evaluation. Re-
quire the measurement interval to be at least this amount of seconds. Increase repetition
count of the evaluation of one problem size is faster than that.

Defaults to 0.003.

meas_minReps
[int, optional] Additional benchmark option that will be passed on to the evaluation. Require
at least this number of repetitions to be performed in one measurement interval.

Defaults to 3.

meas_minReps
[int, optional] Additional benchmark option that will be passed on to the evaluation. Require
at least this number of independent measurements for one evaluation.

Defaults to 3.

25.7.

Calibration and Runtime Optimization

69



fastmat, Release 0.2.2

funcStep
[int callable(int)] Additional benchmark option that will be passed on to the evaluation. Pro-

vision to increase problem size after each evaluation as lamba function returning the next
problem size, based on the current.

Defaults to lambda x: x + 1.

**options
[optional] Additional benchmark options that will be passed on to the evaluation.

Returns

tuple (MatrixCalibration, BENCH)
If the option benchmarkOnly is True, return the generated calibration data and the benchmark

instance (containing all benchmark data collected) as a tuple

BENCH
If the option benchmarkOnly is False, return the benchmark instance.

fastmat.core.calibration.getMatrixCalibration(target)
Return a MatrixCalibration object with the calibration data for the fastmat baseclass target was instantiated
from.

Parameters

target
[Matrix] The fastmat Matrix class for which a MatrixCalibration object shall be re-

turned.
Returns

MatrixCalibration
If no calibration data exists, None will be returned.

fastmat.core.calibration.loadCalibration(filename)
Short summary.
Parameters

filename
[type] Description of parameter filename.

Returns

type
Description of returned object.

fastmat.core.calibration.saveCalibration(filename)
Save package calibration data in JSON format to file.

The top level is a dictionary containing calibration data for each class, as a MatrixCalibration object, and
identified by the class object’s basename as string. The MatrixCalibration object —being a dict itself — will

be represented transparently by JSON.
Parameters

filename
[str] Filename to write the configuration data to.

Returns

None

70 Chapter 25. Architecture



CHAPTER
TWENTYSIX

USER DEFINED CLASSES

26.1 Developing Your own fastmat Matrix

To be delivered (somewhere in time).

26.2 Optimizing fastmat Class Implementations

To be delivered (somewhere in time).

In this section we will show what needs to be done in order to implement a new fastmat class and detail on how to zest it
properly once it is implemented using the built-in class test system. Further, we show how to evaluate the performance
of your implementation by using the also-built-in benchmarking system and give examples on how to optimize a given
implementation to improve its performance.

71



fastmat, Release 0.2.2

72 Chapter 26. User Defined Classes



CHAPTER
TWENTYSEVEN

TESTING AND BENCHMARKING

27.1 Benchmarking fastmat Classes

To be delivered (somewhere in time).

27.2 Testing fastmat Classes and Unit Tests

27.2.1 Fastmat type identifiers
27.2.2 fastmat.inspect.test

class fastmat.inspect.test.TEST
Bases: NAME

ALG = 'algorithm'

ALGORITHM = 'algorithm'
ALG_ARGS = 'algorithmArgs'
ALG_KWARGS = 'algorithmKwargs'

ALG_MATRIX

'algorithmMatrix'
ARGS = 'testArgs'

CHECK_DATATYPE = 'checkDataType'
CHECK_PROXIMITY = 'checkProximity'
CLASS = 'class'

DATAALIGN

'dataAlign’
DATAARRAY = 'arrData'
DATACENTER = 'dataDistCenter'
DATACOLS = 'numVectors'

DATAGEN = 'dataGenerator'

73



fastmat, Release 0.2.2

DATASHAPE = 'dataShape'
DATASHAPE_T = 'dataShapeBackward'
DATATYPE = 'dataType'

IGNORE = 'ignore'

INIT = 'init'

INITARGS = 'args'

INITKWARGS = 'kwargs'
INIT_VARIANT = 'initVariant'
INSTANCE = 'instance'

KWARGS

'testKwargs'

NAMING

'naming’
NAMINGARGS = 'namingArgs'

NUM_COLS 'numCols’

NUM_ROWS

'"numRows '

OBJECT = 'object'

PARAMALIGN = 'alignment'

QUERY = 'query'

REFALG = 'refAlgorithm'

REFALG_ARGS = 'refAlgorithmArgs'
REFALG_KWARGS = 'refAlgorithmKwargs'
REFERENCE = 'reference'
RESULT_IGNORED = 'testResultIgnored'
RESULT_INFO = 'testInfo'
RESULT_INPUT = 'testInput’
RESULT_OUTPUT = 'testOutput'
RESULT_PROX = 'testResultProximity'
RESULT_REF = 'testReference'
RESULT_TOLERR = 'testTolError'
RESULT_TYPE = 'testResultType'

SKIP = 'skip'

TOL_MINEPS = 'tolMinEps'

74 Chapter 27. Testing and Benchmarking



fastmat, Release 0.2.2

TOL_POWER = 'tolPower'
TRANSFORMS = 'transform'
TYPE_EXPECTED = 'typeExpected'
TYPE_PROMOTION = 'typePromotion'
class fastmat.inspect.test.Test (targetClass, **options)
Bases: Worker
Short summary.
Parameters

targetClass
[type] Description of parameter targetClass.

**options
[type] Description of parameter **options.

Attributes

_verboseFull
[type] Description of attribute _verboseFull.

__init__(rargetClass, **options)

Short summary.
Parameters

targetClass
[type] Description of parameter targetClass.

**options
[type] Description of parameter **options.

Returns

type
Description of returned object.

findProblems (nameTarget, targetResult)
Short summary.

Parameters

nameTarget
[type] Description of parameter nameTarget.

targetResult
[type] Description of parameter targetResult.

Returns

type
Description of returned object.

printStatus (nameTest, resultTest, lenName=-1, descrVariants="")

Short summary.
Parameters

nameTest
[type] Description of parameter nameTest.

27.2. Testing fastmat Classes and Unit Tests 75



fastmat, Release 0.2.2

resultTest
[type] Description of parameter resultTest.

lenName
[type] Description of parameter lenName.

descrVariants
[type] Description of parameter descrVariants.

Returns

type
Description of returned object.

property verbosity
fastmat.inspect.test.compareResults (fest, query)
Short summary.
Parameters

test
[type] Description of parameter test.

query
[type] Description of parameter query.

Returns

type
Description of returned object.

fastmat.inspect.test.formatResult (result)

Short summary.
Parameters

result
[type] Description of parameter result.

Returns

type
Description of returned object.

fastmat.inspect.test.initTest (fest)

Short summary.
Parameters

test
[type] Description of parameter test.

Returns

type
Description of returned object.

fastmat.inspect.test.testAlgorithm(zest)

Short summary.
Parameters

test
[type] Description of parameter test.

76 Chapter 27. Testing and Benchmarking



fastmat, Release 0.2.2

Returns

type
Description of returned object.

fastmat.inspect.test.testArray (fest)

Short summary.
Parameters

test
[type] Description of parameter test.

Returns

type
Description of returned object.

fastmat.inspect.test.testArrays(rest)

Short summary.
Parameters

test
[type] Description of parameter test.

Returns

type
Description of returned object.

fastmat.inspect.test.testBackward(rest)

Short summary.
Parameters

test
[type] Description of parameter test.

Returns

type
Description of returned object.

fastmat.inspect.test.testColNorms (fest)

Short summary.
Parameters

test
[type] Description of parameter test.

Returns

type
Description of returned object.

fastmat.inspect.test.testColNormsColNormalized (test)

Short summary.
Parameters

test
[type] Description of parameter test.

27.2. Testing fastmat Classes and Unit Tests

77



fastmat, Release 0.2.2

Returns

type
Description of returned object.

fastmat.inspect.test.testConjugate (fest)

Short summary.
Parameters

test
[type] Description of parameter test.

Returns

type
Description of returned object.

fastmat.inspect.test.testFailDump (fest)

Short summary.
Parameters

test
[type] Description of parameter test.

Returns

type
Description of returned object.

fastmat.inspect.test.testForward(test)

Short summary.
Parameters

test
[type] Description of parameter test.

Returns

type
Description of returned object.

fastmat.inspect.test.testGetColsMultiple(resr)

Short summary.
Parameters

test
[type] Description of parameter test.

Returns

type
Description of returned object.

fastmat.inspect.test.testGetColsSingle(rest)

Short summary.
Parameters

test
[type] Description of parameter test.

78 Chapter 27. Testing and Benchmarking



fastmat, Release 0.2.2

Returns

type
Description of returned object.

fastmat.inspect.test.testGetItem(test)

Short summary.
Parameters

test
[type] Description of parameter test.

Returns

type
Description of returned object.

fastmat.inspect.test.testGetRowsMultiple (resr)

Short summary.
Parameters

test
[type] Description of parameter test.

Returns

type
Description of returned object.

fastmat.inspect.test.testGetRowsSingle (zest)

Short summary.
Parameters

test
[type] Description of parameter test.

Returns

type
Description of returned object.

fastmat.inspect.test.testGram(rest)

Short summary.
Parameters

test
[type] Description of parameter test.

Returns

type
Description of returned object.

fastmat.inspect.test.testHermitian(zest)

Short summary.
Parameters

test
[type] Description of parameter test.

27.2. Testing fastmat Classes and Unit Tests

79



fastmat, Release 0.2.2

Returns

type
Description of returned object.

fastmat.inspect.test.testInterface(rest)

Short summary.
Parameters

test
[type] Description of parameter test.

Returns

type
Description of returned object.

fastmat.inspect.test.testLargestSV(rest)

Short summary.
Parameters

test
[type] Description of parameter test.

Returns

type
Description of returned object.

fastmat.inspect.test.testRowNormalized(zest)

Short summary.
Parameters

test
[type] Description of parameter test.

Returns

type
Description of returned object.

fastmat.inspect.test.testRowNorms (fest)

Short summary.
Parameters

test
[type] Description of parameter test.

Returns

type
Description of returned object.

fastmat.inspect.test.testTranspose (fest)

Short summary.
Parameters

test
[type] Description of parameter test.

80 Chapter 27. Testing and Benchmarking



fastmat, Release 0.2.2

Returns

type
Description of returned object.

fastmat.inspect.test.tryQuery(nameTest, query, argument)

In this section we will show two built-in systems that allow you to fest and benchmarking any fastmat Matrix imple-
mentation. Testing is important to verify that a certain implementation actually does what you’d expect of it and is
virtually the essential cornerstone to writing your own user defined matrix class implementation.

The scope of the implemented testing system expands to these areas (not complete):
* Testing of mathematical correctness
* Testing of computational accuracy
* Testing of various data types (and combinations thereof)
¢ Testing of parameter combinations
* Testing for different platforms ans versions (mostly done by our CI setup)

Benchmarking, however, is a valuable goodie to have in your toolbox to evaluate the performance of your implemen-
tation and to find culprits that impact the runtime or memory consumption of your implementation. Make sure to also
tune in to out optimization section, where we detail on how to use the information gained from benchmarking your
classes productively to improve your implementation.

27.2. Testing fastmat Classes and Unit Tests 81



fastmat, Release 0.2.2

82 Chapter 27. Testing and Benchmarking



CHAPTER
TWENTYEIGHT

EXAMPLES

28.1 Compressed Sensing example

We set up a linear forward model using a Fourier matrix as dictionary and reconstruct the underlying sparse vector
from linear projections using a matrix with elements drawn randomly from a Gaussian distribution.

import numpy as np
import matplotlib.pyplot as plt

import fastmat as fm
import fastmat.algorithms as fma

# Problem dimensions

compression_factor = 4

N 60 # Problem size

M int(N / compression_factor) # Number of observations
k =3 # sparsity level

noise_power_db = -10.

# Ground truth of scenario

# We choose the ground_truth to be two dimensional here to align all vectors
# explicitly vertical, allowing easy stacking later on
ground_truth_positions = np.random.choice(N, k)

ground_truth_weights = np.random.randn(k, 1)

ground_truth = np.zeros((N, 1))

ground_truth[ground_truth_positions] = ground_truth_weights

# Set up the linear signal model and reconstruction method,

# consisting of Measurement Matrix "Phi’ and Signal Base 'Dict’
Phi = fm.Matrix(np.random.randn(M, N))

Dict = fm.Fourier(N)

A = Phi * Dict
# Now determine the actual (real-world) signal and its observation

# according to the specified Measurement matrix and plot the signals
# also allow for noise

(continues on next page)

83




fastmat, Release 0.2.2

(continued from previous page)

def add_noise(signal, pwr_db):
return signal + 10%*(pwr_db / 10.) * np.linalg.norm(signal) * (
np.random.randn(*signal.shape) / np.sqrt(signal.size)

)

x_clean = Dict * ground_truth
x = add_noise(x_clean, noise_power_db)

b = Phi * x

# Now reconstruct the original ground truth using

# * Orthogonal Matching Pursuit (OMP)

# * Fast Iterative Shrinkage Thresholding Algorithm (FISTA)

# * Soft-Thresholding with simplified Exact Line search Algorithm (STELA)

numLambda = 5

numSteps = 600

alg_omp = fma.OMP(A, numMaxSteps=k)

alg_fista = fma.FISTA(A, numMaxSteps=numSteps, numLambda=numLambda)
alg_stela = fma.STELA(A, numMaxSteps=numSteps, numLambda=numLambda)
y_omp = alg_omp.process(b)

y_fista = alg_fista.process(b)

y_stela = alg_stela.process(b)

# Setup a simple phase transition diagram for OMP, for a number of randomly
# chosen measurement matrices and another number of noise realizations for
# each measurement matrix.
trials = 15
M_phase_transition = np.arange(k, N)
true_support = (ground_truth == 0)
success_rate = np.zeros(len(M_phase_transition))
for index, m_phase_transition in enumerate(M_phase_transition):
for _ in range(trials):

# randomly choose a new measurement matrix

Phi_pt = fm.Matrix(np.random.randn(m_phase_transition, N))

alg_omp = fma.OMP(Phi_pt * Dict, numMaxSteps=k)

# randomly choose “trials’ different noise realizations
x_pt = add_noise(np.tile(x_clean, (1, trials)), noise_power_db)
b_pt = Phi_pt * x_pt

# and process recovery all in one flush
recovered_support = alg_omp.process(b_pt)

# now determine the success of our recovery and update the success rate
success = (recovered_support == 0.) == true_support
success_rate[index] += np.mean(np.all(success, axis=0))

print(success_rate[index])

# finally, normalize the success_rate to the amount of trials performed
success_rate = success_rate / trials

(continues on next page)

84 Chapter 28. Examples




fastmat, Release 0.2.2

(continued from previous page)

# Plot all results
plt.figure(l)

plt.clfQ)
plt.title('Ground Truth')
plt.plot(ground_truth)

plt.figure(2)

plt.clfQ)

plt.title('Actual Signal')

plt.plot(x_clean, label='Actual signal')
plt.plot(x, label="Actual signal with noise')
plt.legend()

plt.figure(3)

plt.clfQ)
plt.title('Observed Signal')
plt.plot(b)

plt.figure(4)

plt.clfQ)

plt.title("Reconstruction from M = " + str(M) + " measurements.')
plt.stem(ground_truth_positions, ground_truth_weights, label='Ground Truth')
plt.plot(y_omp, label='Reconstruction from OMP")

plt.plot(y_fista, label='Reconstruction from FISTA')

plt.plot(y_stela, label='Reconstruction from STELA')

plt.legend()

#

plt.figure(5)

plt.clf(Q)

plt.title("Phase transition for sparsity k = " + str(k))

plt.plot(l. * M_phase_transition / N, success_rate, label='Sucess rate of OMP')
plt.xlabel ('compression ratio M/N")

plt.ylabel('Sucess rate')

plt.legend()

plt.show()

28.2 Solve a System of Linear Equations with Preconditioning

The preconditioner used for solving can also be provided as a LinearOperator.

import fastmat as fm

import numpy as np

from scipy.sparse.linalg import cgs
# diagonal matrix with no zeros

d = np.random.uniform(1l, 20, 2 ** 10)

# fastmat object
H = fm.Diag(d)

(continues on next page)

28.2. Solve a System of Linear Equations with Preconditioning 85




fastmat, Release 0.2.2

Ground Truth

1.0

0.5

0.0 A

—0.5 A

—1.0 A

—1.54

10

20 30 40 50 60

86

Chapter 28. Examples



fastmat, Release 0.2.2

Actual Signal
—— Actual signal

3 —— Actual signal with noise

2

1 -

0 -
-1 4
A
-3

(I) 1IO 2IO 3|0 4IO 5|0 6|O

28.2. Solve a System of Linear Equations with Preconditioning 87



fastmat, Release 0.2.2

Observed Signal

30 ~

20 A

10 A

_10 4

88 Chapter 28. Examples



fastmat, Release 0.2.2

Reconstruction from M = 15 measurements.

—1.0 A

—— Reconstruction from OMP
- Reconstruction from FISTA
—— Reconstruction from STELA

—1.57 _® _ Ground Truth

0 10 20 30 40 50 60

28.2. Solve a System of Linear Equations with Preconditioning 89



fastmat, Release 0.2.2

Phase transition for sparsity k = 3

1.0 A

0.8 A

Sucess rate
o
(o)}
1

o
>
1

0.2 A

0.0

—— Sucess rate of OMP

0.2

0.4 0.6 0.8 1.0
compression ratio M/N

90

Chapter 28. Examples



fastmat, Release 0.2.2

(continued from previous page)

# use the new property to generate a scipy linear operator
Hs = H.scipyLinearOperator

# also generate a Preconditioning linear operator,
# which in this case is the exact inverse
Ms = fm.Diag(1l.0 / d).scipyLinearOperator

# get a baseline

x = np.random.uniform(1l, 20, 2 ** 10)
y = np.linalg.solve(H.array, x)
cgs(Hs, x, tol=1le-10)

cgs(Hs, x, tol=le-10, M=Ms)

In this section we will put some examples on the usage of fastmat (later on).

28.2. Solve a System of Linear Equations with Preconditioning

91




fastmat, Release 0.2.2

92 Chapter 28. Examples



CHAPTER
TWENTYNINE

REFERENCES

12345

! Stefan van der Walt, S. Chris Colbert and Gael Varoquaux, “The NumPy Array: A Structure for Efficient Numerical Computations”, Computing
in Science and Engineering, Volume 13, 2011.

2 Rao K. Yarlagadda, John E. Hershey’, “Hadamard Matrix Analysis and Synthesis, With Applications to Communications and Signal/Image
Processing”, The Springer International Series in Engineering and Computer Science, Volume 383, 1997

3 Stefan Behnel, Robert Bradshaw, Craig Citro, Lisandro Dalcin, Dag Sverre Seljebotn and Kurt Smith, “Cython: The Best of Both Worlds”,
Computing in Science and Engineering, Volume 13,2011

4 Fernandes, Paulo and Plateau, Brigitte and Stewart, William J., “Efficient Descriptor-Vector Multiplications in Stochastic Automata Networks”,
Journal of the ACM, New York, Volume 45, 1998

5 Simon W. Golomb, “Shift Register Sequences”, Holden-Day, Inc. 1967

93



fastmat, Release 0.2.2

94 Chapter 29. References



CHAPTER
THIRTY

30.1 Rolling Stable Branch

* Github Link

30.2 Version 0.2

e Download Link

30.3 Version 0.1.2

¢ Download Link

30.4 Version 0.1.1

¢ Download Link

¢ Documentation Link

30.5 Version 0.1

¢ Download Link

¢ Documentation Link

RELEASES

95


https://github.com/EMS-TU-Ilmenau/fastmat/tree/stable
https://github.com/EMS-TU-Ilmenau/fastmat/archive/0.2.zip
https://github.com/EMS-TU-Ilmenau/fastmat/archive/0.1.2.zip
https://github.com/EMS-TU-Ilmenau/fastmat/archive/0.1.1.zip
https://github.com/EMS-TU-Ilmenau/fastmat/releases/download/0.1.1/Documentation.pdf
https://github.com/EMS-TU-Ilmenau/fastmat/archive/0.1.zip
https://github.com/EMS-TU-Ilmenau/fastmat/releases/download/0.1/fastmatDoc.pdf

fastmat, Release 0.2.2

96 Chapter 30. Releases



CHAPTER
THIRTYONE

INTRODUCTION

In many fields of engineering linear transforms play a key role during modeling and solving real world problems.
Often these linear transforms have an inherent structure which reduces the degrees of freedom in their parametrization.
Moreover, this structure allows to describe the action of a linear mapping on a given vector more efficiently than the
general one.

This structure can be exploited twofold. First, the storage of these transforms in form of matrices, on computers
normally an array of numbers in C or R, might be unnecessary. So for each structure there is a more concise way
of representation, which leads to a benefit in memory consumption when using these linear transforms. Second, the
structure allows more efficient calculations when applying the linear transform to a vector. This may result in a drop in
algorithmic complexity which implies that computing time can be saved.

Still, these structural benefits have to be exploited and it is not often easy to accomplish this in a save and reuseable
way. Moreover, in applications you often think of the linear transforms as a matrix and your way of working with it is
streamlined to this way of thinking, which is only natural, but does not directly allow to exploit the structure.

So, there are different ways of thinking in what is natural and in what is efficient. This is the gap fastmat tries to bridge
by allowing you to work with the provided objects as if they were common matrices represented as arrays of numbers,
while the algorithms that make up the internals are highly adapted to the specific structure at hand. It provides you
with a set of tools to work with linear transforms while hiding the algorithmic complexity and exposing the benefits in
memory and calculation efficiency without too much overhead.

This way you can worry about really urgent matters to you, like research and development of algorithms and leave the
internals to fastmat.

97



fastmat, Release 0.2.2

98 Chapter 31. Introduction



CHAPTER
THIRTYTWO

PUBLICATIONS

Since we created a package for scientific computing, it makes sense to use it for science. Below we list all publications,
which make use of our package with varying degree. If made use of fastmat in your publication, we are happy to
reference it here:

* The White Paper: Fast Linear Transforms in Python
e Defect Detection from 3D Ultrasonic Measurements Using Matrix-free Sparse Recovery Algorithms
* GPU-accelerated Matrix-Free 3D Ultrasound Reconstruction for Nondestructive Testing

If you use fastmat in your own work we kindly ask you to cite the above mentioned white paper as an acknowledgement.

99


https://arxiv.org/abs/1710.09578
https://www.researchgate.net/publication/327768393_Defect_Detection_from_3D_Ultrasonic_Measurements_Using_Matrix-free_Sparse_Recovery_Algorithms
https://www.researchgate.net/publication/328476659_GPU-accelerated_Matrix-Free_3D_Ultrasound_Reconstruction_for_Nondestructive_Testing

fastmat, Release 0.2.2

100 Chapter 32. Publications



CHAPTER
THIRTYTHREE

PUBLIC APPEARANCES

Sometimes we also get out in the wild and present the package. The talks we held can be found below.

* EuroScipy 2017 Erlangen: PDF, Youtube

101


https://github.com/EMS-TU-Ilmenau/fastmat/releases/download/0.1/082017euroscipy.pdf
https://www.youtube.com/watch?v=dq5bLgLGae8

fastmat, Release 0.2.2

102 Chapter 33. Public Appearances



CHAPTER
THIRTYFOUR

CONTRIBUTIONS

There are many ways you as an individual can contribute. We are happy about feature requests, bug reports and of
course contributions in form of additional features. To these ends, please step by at Github where we organize the work
on the package.

103


https://github.com/EMS-TU-Ilmenau/fastmat

fastmat, Release 0.2.2

104 Chapter 34. Contributions



CHAPTER
THIRTYFIVE

AFFILIATIONS AND CREDITS

Currently the project is jointly maintained by Sebastian Semper and Christoph Wagner at the EMS group at TU IImenau.

105


https://www.tu-ilmenau.de/it-ems/
https://www.tu-ilmenau.de/

fastmat, Release 0.2.2

106 Chapter 35. Affiliations and Credits



BIBLIOGRAPHY

[1] Amir Beck, Marc Teboulle, “A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems”,
SIAM Journal on Imaging Sciences, 2009, Vol. 2, No. 1 : pp. 183-202

[1] Amir Beck, Marc Teboulle, “A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems”,
SIAM Journal on Imaging Sciences, 2009, Vol. 2, No. 1 : pp. 183-202

[1] S. G. Mallat, Z. Zhang, “Matching pursuits with time-frequency dictionaries”, IEEE Transactions on Signal Pro-
cessing, vol. 41, no. 12, pp. 3397-3415, Dec 1993

[1] Y. Yang, M. Pesavento, “A Unified Successive Pseudoconvex Approximation Framework”, IEEE Transactions on
Signal Processing, vol. 65, no. 13, pp. 3313-3327, Dec 2017

107



fastmat, Release 0.2.2

108 Bibliography



f

fastmat,
.core.calibration, 68
.core.cmath, 67

fastmat.

fastmat
fastmat

fastmat

97

core.strides, 68

.core.types, 65
fastmat.

inspect.test, 73

PYTHON MODULE INDEX

109



fastmat, Release 0.2.2

110 Python Module Index



Symbols

__init__Q (fastmat.BlockDiag method), 2
__init__Q (fastmat.Blocks method), 3
__init__Q (fastmat.Circulant method), 5
__init__Q (fastmat.Conjugate method), 51
__init__Q (fastmat.Diag method), 7
__init__Q (fastmat.DiagBlocks method), 9
__init__Q (fastmat.Eye method), 11
__init__Q (fastmat.Fourier method), 13
__init__Q (fastmat.Hadamard method), 15
__init__Q (fastmat.Hermitian method), 51
__init__Q (fastmat.Kron method), 17
__init__Q (fastmat.LFSRCirculant method), 20
__init__Q (fastmat.LowRank method), 21
__init__Q (fastmat.Matrix method), 23
__init__Q (fastmat.Outer method), 33
__init__Q (fastmat.Parametric method), 36
__init__Q (fastmat.Partial method), 37
__init__Q (fastmat.Permutation method), 39
__init__Q (fastmat.Polynomial method), 41
__init__Q (fastmat.Product method), 43
__init__Q (fastmat.Sparse method), 46
__init__Q (fastmat.Sum method), 47
__init__Q (fastmat.Toeplitz method), 49
__init__Q (fastmat.Transpose method), 51
__init__Q (fastmat.Zero method), 53
__init__Q (fastmat.algorithms.Algorithm method), 55
__init__Q (fastmat.algorithms.FISTA method), 57
__init__Q (fastmat.algorithms.ISTA method), 58
__init__Q (fastmat.algorithms.OMP method), 59
__init__Q (fastmat.algorithms.STELA method), 61
__init__Q (fastmat.inspect.test.Test method), 75

A

ALG (fastmat.inspect.test. TEST attribute), 73
ALG_ARGS (fastmat.inspect.test. TEST attribute), 73
ALG_KWARGS (fastmat.inspect.test. TEST attribute), 73
ALG_MATRIX (fastmat.inspect.test. TEST attribute), 73
Algorithm (class in fastmat.algorithms), 55
ALGORITHM (fastmat.inspect.test. TEST attribute), 73
ARGS (fastmat.inspect.test. TEST attribute), 73

arrA (fastmat.algorithms.OMP attribute), 60

INDEX

array (fastmat.Matrix attribute), 24

arrB (fastmat.algorithms. OMP attribute), 60

arrC (fastmat.algorithms. OMP attribute), 60
arrResidual (fastmat.algorithms.OMP attribute), 60
arrSupport (fastmat.algorithms.OMP attribute), 60
arrU (fastmat.LowRank attribute), 22

arrV (fastmat.LowRank attribute), 22

arrX (fastmat.algorithms. OMP attribute), 60
arrXtmp (fastmat.algorithms. OMP attribute), 60

B

backward() (fastmat.Matrix method), 24
BlockDiag (class in fastmat), 1

Blocks (class in fastmat), 3

bypassAllow (fastmat.Matrix attribute), 25
bypassAutoArray (fastmat.Matrix attribute), 25

C

calibrateAll () (in module fastmat.core.calibration),
68

calibrateClass() (in
mat.core.calibration), 68

cbResult (fastmat.algorithms.Algorithm attribute), 55

cbTrace (fastmat.algorithms.Algorithm attribute), 55

CHECK_DATATYPE (fastmat.inspect.test. TEST attribute),
73

CHECK_PROXIMITY (fastmat.inspect.test. TEST attribute),
73

Circulant (class in fastmat), 5

CLASS (fastmat.inspect.test. TEST attribute), 73

coeff (fastmat.Polynomial attribute), 41

colNormalized (fastmat.Matrix attribute), 25

colNorms (fastmat.Matrix attribute), 25

colSelection (fastmat.Partial attribute), 38

compareResults () (in module fastmat.inspect.test), 76

complexity (fastmat.Matrix attribute), 25

conj (fastmat.Matrix attribute), 25

Conjugate (class in fastmat), 51

content (fastmat.Matrix attribute), 25

D

DATAALIGN (fastmat.inspect.test. TEST attribute), 73

module fast-

111



fastmat, Release 0.2.2

DATAARRAY (fastmat.inspect.test. TEST attribute), 73
DATACENTER (fastmat.inspect.test. TEST attribute), 73
DATACOLS (fastmat.inspect.test. TEST attribute), 73
DATAGEN (fastmat.inspect.test. TEST attribute), 73
DATASHAPE (fastmat.inspect.test. TEST attribute), 73
DATASHAPE_T (fastmat.inspect.test. TEST attribute), 74
DATATYPE (fastmat.inspect.test. TEST attribute), 74
Diag (class in fastmat), 7

DiagBlocks (class in fastmat), 9

dtype (fastmat.Matrix attribute), 25

E

estimateRuntime () (fastmat.Matrix method), 25
Eye (class in fastmat), 11

F

fastmat

module, 97
fastmat.core.calibration

module, 68
fastmat.core.cmath

module, 67
fastmat.core.strides

module, 68
fastmat.core.types

module, 65
fastmat.inspect.test

module, 73
findProblems () (fastmat.inspect.test. Test method), 75
FISTA (class in fastmat.algorithms), 56
fmatA (fastmat.algorithms.OMP attribute), 60
fmatC (fastmat.algorithms. OMP attribute), 60
formatResult () (in module fastmat.inspect.test), 76
forward(Q) (fastmat.Matrix method), 25
Fourier (class in fastmat), 13
fun (fastmat. Parametric attribute), 36
fusedType (fastmat.Matrix attribute), 26

G

getArray() (fastmat.Matrix method), 26

getCol () (fastmat.Matrix method), 26

getColNormalized() (fastmat.Matrix method), 26

getColNorms () (fastmat.Matrix method), 26

getCols() (fastmat.Matrix method), 26

getComplexity() (fastmat.Matrix method), 27

getConj ) (fastmat.Matrix method), 27

getFusedType () (in module fastmat.core.types), 65

getGram() (fastmat.Matrix method), 27

getHQ) (fastmat.Matrix method), 277

getInverse() (fastmat.Matrix method), 277

getLargestEigenValue () (fastmat.Matrix method), 27

getLargestEigenVec() (fastmat.Matrix method), 28

getLargestSingularValue() (fastmat.Matrix
method), 28

getLargestSingularVectors() (fastmat.Matrix
method), 29
getMatrixCalibration() (in module  fast-

mat.core.calibration), 70
getNumpyType () (in module fastmat.core.types), 65
getPseudoInverse() (fastmat.Matrix method), 29
getRow() (fastmat.Matrix method), 29
getRowNormalized() (fastmat.Matrix method), 29
getRowNorms () (fastmat.Matrix method), 29
getRows ) (fastmat.Matrix method), 29
getScipyLinearOperator () (fastmat.Matrix method),

29
getT(Q) (fastmat.Matrix method), 29
getTypeEps () (in module fastmat.core.types), 65
getTypeMax () (in module fastmat.core.types), 65
getTypeMin() (in module fastmat.core.types), 66
gram (fastmat.Matrix attribute), 29

H

H (fastmat.Matrix attribute), 23

Hadamard (class in fastmat), 15

handleCallback() (fastmat.algorithms.Algorithm
method), 55

Hermitian (class in fastmat), 51

IGNORE (fastmat.inspect.test. TEST attribute), 74
indicesM (fastmat.Partial attribute), 38

indicesN (fastmat.Partial attribute), 38

INIT (fastmat.inspect.test. TEST attribute), 74
INIT_VARIANT (fastmat.inspect.test. TEST attribute), 74
INITARGS (fastmat.inspect.test. TEST attribute), 74
INITKWARGS (fastmat.inspect.test. TEST attribute), 74
initTest () (in module fastmat.inspect.test), 76
INSTANCE (fastmat.inspect.test. TEST attribute), 74
inverse (fastmat.Matrix attribute), 29
isComplex () (in module fastmat.core.types), 66
isFloat () (in module fastmat.core.types), 66
isInteger () (in module fastmat.core.types), 66
ISTA (class in fastmat.algorithms), 57

K

Kron (class in fastmat), 17
KWARGS (fastmat.inspect.test. TEST attribute), 74

L

largestEigenValue (fastmat.Matrix attribute), 29

largestEigenVec (fastmat.Matrix attribute), 29

largestEV (fastmat.Matrix attribute), 29

largestSingularValue (fastmat.Matrix attribute), 30

largestSingularVectors (fastmat.Matrix attribute),
30

largestSV (fastmat.Matrix attribute), 30

112

Index



fastmat, Release 0.2.2

LFSRCirculant (class in fastmat), 19

loadCalibration() (in
mat.core.calibration), 70

LowRank (class in fastmat), 21

M

matPinv (fastmat.algorithms.OMP attribute), 60

Matrix (class in fastmat), 23

module
fastmat, 97
fastmat.core.
fastmat.core.
fastmat.core.strides, 68
fastmat.core.types, 65
fastmat.inspect.test, 73

module fast-

calibration, 68
cmath, 67

N

NAMING (fastmat.inspect.test. TEST attribute), 74
NAMINGARGS (fastmat.inspect.test. TEST attribute), 74
nbytes (fastmat.algorithms.Algorithm attribute), 55
nbytes (fastmat.Matrix attribute), 30
nbytesReference (fastmat.Matrix attribute), 30
newCols (fastmat.algorithms.OMP attribute), 60
newIndex (fastmat.algorithms.OMP attribute), 60
next () (fastmat.Matrix method), 30

normalized (fastmat.Matrix attribute), 30
NUM_COLS (fastmat.inspect.test. TEST attribute), 74
NUM_ROWS (fastmat.inspect.test. TEST attribute), 74
numCols (fastmat.Matrix attribute), 30

numL (fastmat.algorithms. OMP attribute), 60

numM (fastmat.algorithms.OMP attribute), 60

numM (fastmat.Matrix attribute), 30

numMaxSteps (fastmat.algorithms.OMP attribute), 60
nunN (fastmat.algorithms.OMP attribute), 60

numN (fastmat.Matrix attribute), 30

numpyType (fastmat.Matrix attribute), 30

numRows (fastmat.Matrix attribute), 30

numStep (fastmat.algorithms.OMP attribute), 60

O

OBJECT (fastmat.inspect.test. TEST attribute), 74
OMP (class in fastmat.algorithms), 58

order (fastmat.Fourier attribute), 14

order (fastmat.Hadamard attribute), 15

order (fastmat. LFSRCirculant attribute), 20
Outer (class in fastmat), 33

P

PARAMALIGN (fastmat.inspect.test. TEST attribute), 74
Parametric (class in fastmat), 35

Partial (class in fastmat), 37

period (fastmat. LFSRCirculant attribute), 20
Permutation (class in fastmat), 39

Polynomial (class in fastmat), 41

polynomial (fastmat. LFSRCirculant attribute), 20
printStatus() (fastmat.inspect.test. Test method), 75
process() (fastmat.algorithms.Algorithm method), 55
Product (class in fastmat), 43

profileBackward (fastmat.Matrix attribute), 30
profileCall () (in module fastmat.core.cmath), 67
profileForward (fastmat.Matrix attribute), 30
pseudoInverse (fastmat.Matrix attribute), 30

Q

QUERY (fastmat.inspect.test. TEST attribute), 74

R

REFALG (fastmat.inspect.test. TEST attribute), 74
REFALG_ARGS (fastmat.inspect.test. TEST attribute), 74
REFALG_KWARGS (fastmat.inspect.test. TEST attribute), 74
REFERENCE (fastmat.inspect.test. TEST attribute), 74
reference() (fastmat.Matrix method), 30
RESULT_IGNORED (fastmat.inspect.test. TEST attribute),
74
RESULT_INFO (fastmat.inspect.test. TEST attribute), 74
RESULT_INPUT (fastmat.inspect.test. TEST attribute), 74
RESULT_OUTPUT (fastmat.inspect.test. TEST attribute), 74
RESULT_PROX (fastmat.inspect.test. TEST attribute), 74
RESULT_REF (fastmat.inspect.test. TEST attribute), 74
RESULT_TOLERR (fastmat.inspect.test. TEST attribute), 74
RESULT_TYPE (fastmat.inspect.test. TEST attribute), 74
rowNormalized (fastmat.Matrix attribute), 30
rowNorms (fastmat.Matrix attribute), 31
rowSelection (fastmat. Partial attribute), 38

S

safeTypeExpansion() (in module fastmat.core.types),
67

saveCalibration() (in
mat.core.calibration), 70

scipyLinearOperator (fastmat.Matrix attribute), 31

shape (fastmat.Matrix attribute), 31

sigma (fastmat.Permutation attribute), 39

size (fastmat. LFSRCirculant attribute), 20

SKIP (fastmat.inspect.test. TEST attribute), 74

snapshot () (fastmat.algorithms.Algorithm method), 55

softThreshold() (fastmat.algorithms.FISTA method),
57

softThreshold () (fastmat.algorithms.ISTA method), 58

softThreshold() (fastmat.algorithms.STELA method),
61

spArray (fastmat.Sparse attribute), 46

spArrayH (fastmat.Sparse attribute), 46

Sparse (class in fastmat), 45

start (fastmat.LFSRCirculant attribute), 20

states (fastmat.LFSRCirculant attribute), 20

module

fast-

Index

113



fastmat, Release 0.2.2

STELA (class in fastmat.algorithms), 60
Sum (class in fastmat), 47

T

T (fastmat.Matrix attribute), 23

tag (fastmat.Matrix attribute), 31

taps (fastmat. LFSRCirculant attribute), 20

tenC (fastmat.Circulant attribute), 5

tenT (fastmat. Toeplitz attribute), 50

TEST (class in fastmat.inspect.test), 73

Test (class in fastmat.inspect.test), 75

testAlgorithm() (in module fastmat.inspect.test), 76

testArray () (in module fastmat.inspect.test), 77

testArrays () (in module fastmat.inspect.test), 77

testBackward() (in module fastmat.inspect.test), 77

testColNorms () (in module fastmat.inspect.test), 77

testColNormsColNormalized() (in module fast-
mat.inspect.test), 77

testConjugate() (in module fastmat.inspect.test), 78

testFailDump ) (in module fastmat.inspect.test), 78

testForward() (in module fastmat.inspect.test), 78

testGetColsMultiple() (in module fast-
mat.inspect.test), 78

testGetColsSingle () (in module fastmat.inspect.test),
78

testGetItem() (in module fastmat.inspect.test), 79

testGetRowsMultiple() (in module fast-
mat.inspect.test), 79

testGetRowsSingle () (in module fastmat.inspect.test),
79

testGram() (in module fastmat.inspect.test), 79

testHermitian() (in module fastmat.inspect.test), 79

testInterface() (in module fastmat.inspect.test), 80

testLargestSV() (in module fastmat.inspect.test), 80

testRowNormalized () (in module fastmat.inspect.test),
80

testRowNorms () (in module fastmat.inspect.test), 80

testTranspose() (in module fastmat.inspect.test), 80

Toeplitz (class in fastmat), 49

TOL_MINEPS (fastmat.inspect.test. TEST attribute), 74

TOL_POWER (fastmat.inspect.test. TEST attribute), 74

trace (fastmat.algorithms.Algorithm attribute), 55

TRANSFORMS (fastmat.inspect.test. TEST attribute), 75

Transpose (class in fastmat), 51

tryQuery () (in module fastmat.inspect.test), 81

TYPE_EXPECTED (fastmat.inspect.test. TEST attribute), 75

TYPE_PROMOTION (fastmat.inspect.test. TEST attribute),

75

U

updateParameters() (fastmat.algorithms.Algorithm
method), 55

Vv

v2 (fastmat.algorithms.OMP attribute), 60
v2n (fastmat.algorithms. OMP attribute), 60
v2y (fastmat.algorithms. OMP attribute), 60
vecC (fastmat. LFSRCirculant attribute), 20
vecC (fastmat.Toeplitz attribute), 50

vecD (fastmat.Diag attribute), 7

vecH (fastmat.Outer attribute), 34

vecR (fastmat. Toeplitz attribute), 50

vecsS (fastmat.LowRank attribute), 22

vecV (fastmat.Outer attribute), 34

vecX (fastmat.Parametric attribute), 36
vecY (fastmat. Parametric attribute), 36

verbosity (fastmat.inspect.test.Test property), 76

Z

Zero (class in fastmat), 53

114

Index



	Block Diagonal Matrix
	Block Matrix
	(Multilevel) Circulant Class
	Diagonal Matrix
	Diagonal Block Matrix
	Identity Matrix
	Fourier Matrix
	Hadamard Matrix
	Kronecker Product
	LFSR Circulant Matrix
	Low Rank Matrix
	Matrix Base Class
	Outer Product
	Parametric Matrix
	Partial Matrix
	Permutation Matrix
	Matrix Polynomial
	Matrix-Matrix Product
	Sparse Matrix
	Matrix Sum
	(Multilevel) Toeplitz Class
	Transposition and Related Classes
	Zero Matrix
	Algorithm Index
	Algorithm Base Class
	FISTA Algorithm
	ISTA Algorithm
	OMP Algorithm
	STELA Algorithm

	Architecture
	Matrix Class Model
	Algorithm Class Model
	SciPy Interface
	Motivation
	Usage

	Data Types in fastmat
	Type handling
	Type promotion
	fastmat.core.types

	Performance Interface to numpy C-API
	fastmat.core.cmath

	Low-Overhead Array Striding Interface
	fastmat.core.strides

	Calibration and Runtime Optimization
	fastmat.core.calibration


	User Defined Classes
	Developing Your own fastmat Matrix
	Optimizing fastmat Class Implementations

	Testing and Benchmarking
	Benchmarking fastmat Classes
	Testing fastmat Classes and Unit Tests
	Fastmat type identifiers
	fastmat.inspect.test


	Examples
	Compressed Sensing example
	Solve a System of Linear Equations with Preconditioning

	References
	Releases
	Rolling Stable Branch
	Version 0.2
	Version 0.1.2
	Version 0.1.1
	Version 0.1

	Introduction
	Publications
	Public Appearances
	Contributions
	Affiliations and Credits
	Bibliography
	Python Module Index
	Index

